Exercise Set 2 Markov Chains

- 1. (Properties of P). Show that
 - (a) P has non-negative entries, $p_{ij} \ge 0$,
 - (b) P has row-sums equal to one, $\sum_{j} p_{ij} = 1$.
- 2. Consider a homogeneous Markov chain with state space $\{1, 2, 3\}$ and transition probability matrix $P = [p_{ij}]$ where the transition probabilities are given by

$$p_{ij} = \frac{i+j}{6+3i}$$

- (a) Write out P and check that it is row-stochastic (ie the cells in the row sum to 1).
- (b) Suppose an initial probability distribution is given as $\pi_0 = (1/2, 1/4, 1/4)$. Determine the distribution π_1 , i.e. $\Pr(X_1 = i)$ for each state *i*.
- 3. Consider the following simple model for the occurence of snow in Paris in February. Let $\{X_0, X_1, ...\}$ be a 2-state Markov chain such that $X_n = 1$ if there is snow in Paris in February of year $n, X_n = 0$ if there is no snow in Paris in February of year n. Two of the transition probabilities are:

Pr(snow in February of next year l snow in February of this year) = 0.3,

Pr(no snow in February of next year l no snow in February of this year) = 0.8.

- (a) Write down the transition probability matrix P.
- (b) We have $X_{2018} = 0$, because it has not snowed in Paris this February. What is the probability that the next time we will have snow in Paris in February will be in 2022?
- (c) What is the probability that, given it has not snowed in Paris this February, there will be snow in Paris in February 2020?

4. The transition matrix of a Markov chain with state space $\{0, 1, 2\}$ is given by

$$\begin{pmatrix} .2 & .4 & .4 \\ .2 & .5 & .3 \\ .5 & .2 & .3 \end{pmatrix}$$

Calculate the stationary distribution of this Markov chain.

5. Let $\{X_n\}$ be a homogeneous Markov chain on the state space $S = \{0, 1, ..., N\}$ with transition probability matrix P and assume that for all $j \in S$ there is π_j such that

$$\lim_{n \to \infty} \Pr\{X_n = j\} = \pi_j$$

Express $\lim_{n\to\infty} \Pr\{X_n = 2 | X_{n+1} = 1\}$ in terms of $(\pi_1, ..., \pi_N)$ and P. Hint: Use the definition of conditional probability.

6. Consider the Markov chain with state space $\{0, 1, 2\}$ and transition probability matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ .1 & .6 & .3 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Determine the probability that the Markov chain ends in state 0 given that it starts in state 1. Hint: Let w_i be the probability of absorption into state 0, given that it starts in state *i*; now consider the conditional probabilities.
- (b) Determine the expected time to absorption, i.e., the expected time for a particle starting in state 1 to enter one of the absorbing states $\{0, 2\}$. Hint: Let D_i be the expected time to absorption, given that it starts in state *i*; now consider the conditional expectations.
- 7. Consider the n-step transition probabilities $p_{ij}^{(n)}$, and collect these in the matrix $P_n = [p_{ij}^{(n)}]$.
 - (a) Prove the Chapman-Kolmogorov equation

$$p_{ij}^{(m+n)} = \sum_{k} p_{ik}^{(m)} p_{kj}^{(n)}$$

i.e. $P_{m+n} = P_m P_n$

(b) Hence argue that $P_n = P^n$.