Exercise Set 3 Duration Models

1. (Kaplan-Meier estimator of the survival function) Let $0<a_{1}<a_{2}<\cdots<a_{M}$ be a positive, increasing set of constants, and let T be a non-negative random variable with $\operatorname{Pr}\{T>0\}=1$.
(a) Show that, for any $m=1, \ldots, M$

$$
\operatorname{Pr}\left\{T>a_{m}\right\}=\operatorname{Pr}\left\{T>a_{m} \mid T>a_{m-1}\right\} \operatorname{Pr}\left\{T>a_{m-1}\right\}
$$

(b) Hence show

$$
\bar{F}\left(a_{r}\right)=\operatorname{Pr}\left\{T>a_{r}\right\}=\prod_{r=1}^{n} \operatorname{Pr}\left\{T>a_{r} \mid T>a_{r-1}\right\}
$$

Noting that a consistent estimator of $\operatorname{Pr}\left\{T>a_{r} \mid T>a_{r-1}\right\}$ is $\frac{N_{r}-E_{r}}{N_{r}}$, you have just derived the Kaplan-Meier estimator of the survival function

$$
\hat{S}(t)=\widehat{\bar{F}}\left(a_{r}\right)=\prod_{r=1}^{n} \frac{N_{r}-E_{r}}{N_{r}}
$$

2. Consider the Weibull model with multiplicative heterogeneity,

$$
\lambda(t \mid x, v)=v e^{x \beta} \lambda_{0}(t)
$$

with $\lambda_{0}(t)=\alpha t^{\alpha-1}$. Assume that there are two types, with $\operatorname{Pr}\left\{v_{i}=\eta\right\}=\rho$ for A types, and $\operatorname{Pr}\left\{v_{i}=(1-\rho \eta) /(1-\rho)\right\}=1-\rho$ for B types (hence $E\left(v_{i}\right)=1$) where $0<\eta<1$.
(a) Find the distribution function of the duration variable T.
(b) Find the log-likelihood function for observation i.
3. Assume that you have a flow sample, but all durations are censored.
(a) Write down the log-likelihood function when all durations are censored.
(b) Find the special case of the Weibull distribution in part (a).
(c) Assume that covariates x do not affect the hazard, only on intercept term is to be included, $\exp (\beta)$. Show that the Weibull log likelihood cannot be maximized for any real numbers β and α. What do you conclude about estimating duration models from flow data when all durations are right censored ?
(d) Now assume that only some durations are censored, but you do not observe the individual durations: let c_{i} be individual's i censoring time, and $d_{i}=$ 1 if the i's duration is censored. Hence you only observe this indicator variable. Show that the conditional likelihood function has the "binary response" form.
4. Consider the problem of estimation using a stock sample. Let the non-censoring indicator be $d_{i}=1$ (spell not censored), c_{i} is the individual censoring date, assumed to be uninformative. $T_{i}=\min \left\{T_{i}^{*}, c_{i}\right\}$. The spell starts at time τ_{i} before interview date b. Consider $\left(\tau_{i}, c_{i}, x_{i}, t_{i}\right)$, which is a random draw from the population of all spells starting in $[0, b]$. The individual is in the sample if the sample selection indicator $s_{i}=1\left(T_{i}^{*} \geq b-\tau_{i}\right)$ equals one. Assume that $c_{i}>b-\tau_{i}$ for all i, so that we always observe part of each spell after the sampling date, b.
(a) For $b-\tau_{i}<t<c_{i}$ show that

$$
\operatorname{Pr}\left\{T_{i}^{*} \leq t \mid \tau_{i}, c_{i}, x_{i}, s_{i}=1\right\}=\frac{F\left(t \mid x_{i}\right)-F\left(b-\tau_{i} \mid x_{i}\right)}{1-F\left(b-\tau_{i} \mid x_{i}\right)}
$$

(b) Hence obtain the density of T_{i}^{*} conditional on $\left(\tau_{i}, c_{i}, x_{i}, s_{i}=1\right)$.
(c) Show that

$$
\operatorname{Pr}\left\{T_{i}=c_{i} \mid \tau_{i}, c_{i}, x_{i}, s_{i}=1\right\}=\frac{1-F\left(c_{i} \mid x_{i}\right)}{1-F\left(b-\tau_{i} \mid x_{i}\right)}
$$

(d) Hence show that the likelihood is therefore

$$
\begin{aligned}
& \sum_{i=1}^{n} d_{i} \log \left(f\left(t_{i} \mid x_{i}, \theta\right)\right) \\
& +\left(1-d_{i}\right) \log \left(1-F\left(t_{i} \mid x_{i}, \theta\right)\right)-\log \left(1-F\left(b-\tau_{i} \mid x_{i}, \theta\right)\right)
\end{aligned}
$$

