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Abstract

Local labour markets exhibit substantial and persistent differences in terms of unem-
ployment rates, nominal and net-of-housing-cost wages, as well as firm productivities.
Yet the observed spatial mobility of workers searching for jobs, unemployed and on-
the-job, is limited and the population response to localised labour demand shocks
is very slow. In order to address this empirical puzzle, we propose a new dynamic
structural and empirical model of workers’ job search within and across many lo-
cal labour markets that extends the frictional search paradigm by interpreting job
search literally as spatial. The tractability of the model, which follows from the di-
rectness of search, allows us to accommodate many locations, worker heterogeneity
and firm behaviour. The model enables us to quantify the underlying drivers of and
barriers (such as relocation costs, classic search frictions, spatial differential flow of
information about job opportunities, and their amplifying interaction) to the spatial
mobility of workers; search frictions now also have a spatial dimension. We estimate
this model structurally using individual transition data obtained from an administra-
tive employer-employee panel from Germany (LIAB).

to do list

• check home productivity bk

• check that λu = 1

• update identification discussion, specifically amenities vs moving costs

• empirical strategy focuses on specification being parsimonious, aiming to avoid over-
fitting
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1 Introduction

The literature has documented two principal empirical features characterising the
spatial mobility of workers searching for jobs across local labour markets. One the
one hand, this spatial mobility is limited,1 while one the other hand, local labour
markets exhibit substantial and persistent differences in terms of e.g. unemployment
rates, wages, and firm productivities.2 Why are the relocation rates of job seekers
so low in the presence of such spatial disparities? In order answer this question
and then to quantify the underlying drivers of and barriers to the spatial mobility of
workers, we propose and then structurally estimate a new dynamic empirical model of
spatial search, which essentially reinterprets and generalises the frictional job search
paradigm as spatial search. In our spatial model, job searchers (both the unemployed
and on-the-job)3 search within and across local labour markets, trading off local
differences in net salaries, unemployment probabilities and non-market aspects such
as amenities in the face of moving costs. Such costs and job search frictions interact
and lead to spatial search friction. This model is then structurally estimated using
an administrative employee-employer panel (LIAB) for Germany.

This approach enables us to make several theoretical and empirical contributions
to the search and matching literature. First, while much has been learned about the
importance of search frictions, the literature tends to treat the process of job search
rather abstractly. We innovate by interpreting job search literally as spatial, so work-
ers search for jobs within and across local labour markets. Search frictions now also
exhibit a spatial dimension, as barriers to mobility, spatially learning frictions about
job opportunities, and the usual search frictions interact. Seen from an alternative
vantage point, our dynamic model builds on the dynamic migration model of Kennan
and Walker (2011), and adds a frictional job search perspective. In particular, the
observed low mobility of workers is empirically rationalised by Kennan and Walker
by very high moving costs. We add to this mechanism by considering search frictions;
as in Schmutz and Sidibé (2018), we allow for informational frictions, captured by
potentially higher job offer rates in the home location compared to alternative loca-

1For instance, Caliendo et al. (2017) report that yearly mobility rates in the US amount to about
3% and in European about 1%. For the sample of young workers (aged 18-27) in the US examined
in Kennan and Walker (2011), the average ten-year interstate migration rate is 32%. Molloy et
al. (2014) report for the period 2002-2012 an interstate migration rate of 3.3% for workers aged
20-24, 1.5% for workers aged 35-44, and rates of no more than 0.9% for older workers. For shorter
movement, the within-county migration rate is 6.6% for workers aged 35-44. For France, Schmutz
and Sidibé (2018) report yearly mobility rates across large regions (NUTS2) for the employed of no
more than 1.5% and no more than 2.5% for smaller (NUTS3, departments) regions. The overall
transition rates for all are only marginally larger. Amior and Manning (2018) also demonstrate
convincingly that the population response to localised labour demand shocks is very slow.

2 Such spatial variation is extensively documented in e.g. Moretti (2011), OECD (2005), or
Overman and Puga (2002), Schmutz and Sidibé (2018) for France, and Section 2 below for evidence
for Germany.

3Both unemployed and employed can search for new jobs in our model. This is in line with
the data, as, for instance, Rupert and Wasmer (2012) have demonstrated that both groups are
spatially mobile: using data from the 2000 US Census, they report that 17% of employed and 25%
of the unemployed have changed residence, and that 42% of relocations are across counties. In our
German administrative data, job-to-job transitions are of the same order of magnitude as out-of-
job transitions. By contrast, some leading models in the literature restrict job search either to the
employed or the unemployed (e.g. Beaudry et al., 2012).
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tions. These additional frictions permit low mobility rates to be consistent with much
lower moving costs. While Schmutz and Sidibé (2018) propose a dynamic random
search model, our approach is complementary: We generalise and extend the directed
search paradigm of Shi (2009) and Menzio and Shi (2011), which gives rise to several
key differences that are outlined next.

As our second contribution, our dynamic directed spatial search model is very
tractable, which allows us to overcome several key challenges that have affected the
estimation of such dynamic location models. This tractability follows from the direct-
edness of search as workers self-select into local labour markets: workers only apply
to jobs they intend to accept and firms only meet workers willing to fill their vacan-
cies. Contact probabilities (and hence value functions) are therefore independent of
the distributions of workers across states/locations. Random search, by contrast, are
less tractable and computationally more challenging because firms can meet workers
unwilling to accept their job offers so contact probabilities depend on the distribu-
tions of workers across states (an exception is Lise and Robin (2017), who consider,
as we do, the joint surplus of a match). This tractability of our model enables us to
accommodates a large number of locations in our empirical analysis. Specifically, we
consider travel-to-work areas (TTWAs) in West Germany, which, unlike administra-
tive spatial units (such as municipalities or cities) reflect the spatial organisation of
economic activity and the idea of a local labour market. Leading dynamic models
in the literature often restrict attention to a very small number of locations.4 Fur-
thermore, the tractability of our model allows us to lift some restrictions Schmutz
and Sidibé (2018) had to impose, such as considering workers as homogeneous, and
abstracts from firm behaviour. By contrast, we model the firm’s decision problem,
estimate firm productivity, and in the empirical analysis allow for different worker
types. Finally, the model permits the study of adjustment paths in the wake of a
localised shock, and we conduct several such counterfactual experiments below.

Third, we estimate our model is structurally using individual-level transition data
from an administrative employee-employer panel (LIAB) for Germany. @@expand@@

• need to discuss briefly / reference Ludo and Carlos.

The paper is organised as follows. Section 2 establishes stylised facts about the
extent and persistence of spatial heterogeneity, as well as the limited mobility of
workers based on our German data. These empirical features inform our model. The
directed search model is described next. We start in Section 3 with a description of
the environment within which agents interact. The workers’ transitions within and
across local labour markets by employment states are presented in Section 3.2, where
we take as given the decisions of workers and firms. These decisions are presented for
the decentralised economy in Section 4, while Appendix A presents in detail the Social
Planner’s Problem, characterises its solution, and demonstrates that the competitive

4For instance, Gould (2007) has two locations corresponding to a rural and an ur-
ban area, whereas Baum-Snow and Pavan (2012) consider three locations corresponding to
small/medium/large cities). By contrast, Kennan and Walker (2011) consider inter-state moves,
but have to restrict the information available to each individual. They observe that “(i)deally, loca-
tions would be defined as local labour markets; (...) even if J is the number of States, the model is
computationally infeasible” (p.216).
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equilibrium is also socially efficient. In Section 5, we describe our estimation strat-
egy, discuss identification of our model’s parameters, outline the parameterisation
employed in our structural estimation, and present preliminary estimation results.
The appendices provide further details and supplementary analyses.

2 Persistent Spatial Heterogeneity and Limited Mo-

bility Across Local Labour Markets: Stylised

Facts for Germany

We proceed to describe and quantify the persistent spatial heterogeneity across local
labour markets and the associated limited spatial mobility of workers in the setting
of our empirical application. Specifically, we have at our disposal individual-level
administrative employee-employer data for Germany. Throughout, we will interpret
the notion of a local labour market as a travel-to-work area (TTWA). These empirical
observations set the scene for and inform our theoretical model presented in Section
3.

2.1 Data

Our individual-level transition data is drawn from a rich administrative employer-
employee panel from the German Social Security system that has been assembled by
the Research Data Centre (FDZ) of the German Federal Employment Agency into
the LIAB data. The LIAB LM 9310 covers the years 1993 to 2010 (see Klosterhuber
et al. (2013) for a recent description of the data, and Dustmann et al. (2009) and
Card et al. (2013) for a recent use in the context of the German wage structure).
We focus on workers in West Germany, given the persistent peculiarites of the labour
market in East Germany.5

This dataset samples private sector workers and includes daily earnings and total
days worked at each job in a year, the total length of unemployment spells, as well
as information on occupation, industry and education. Since the data are based on
administrative social security registers, individual information about labour market
states and wage is of exceptional quality, and accurate to the day. While civil servants
and the self-employed are not sampled, dependent private sector employees constitute
about 80% of the workforce. The establishment identifiers link the workers employed
in firms as of the 30th June to the annual waves of the IAB Establishment Panel.
In each year, the data cover on average about 1.4 million individuals and 300,000
establishments.

The employer-employee panel enables the estimation of worker fixed effects in
comprehensive wage regressions. Specifically, we use the worker fixed effects as ob-
tained by Card et al. (2013) who apply the methodology of Abowd, Kramarz and
Margolis (1999) using the universe of German private sector workers (assembled in the
Integrated Employment Biographies), from which our data is drawn. These worker

5For instance, Heise and Porzio (2018) report a persistent unconditional wage gap of 27% between
workers in the West and the East, persistent productivity differences, and attribute part of the wage
gap to a preference of East Germans to live in the East.
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Figure 1: Travel-to-work areas (TTWAs) and the spatial distribution of unemploy-
ment.

12.37-17.24
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9.75-10.92
8.98-9.75
8.19-8.98
7.37-8.19
6.79-7.37
6.17-6.79
4.99-6.17

spatial distribution of unemployment (TTWAs)

Notes: Depicted are 108 TTWAs in West Germany (we exclude Berlin),

and mean local unemployment rates over time period 2002-2008, ar-

ranged into 9 quantile groups. The unemployment rate is obtained from

www.regionalstatistik.de at the level of the district, and aggregated for TTWAs

using weights given by district-level relative population size.

fixed effects will be used in the empirical analysis in order to allow for worker het-
erogeneity. Specifically, we consider 3 groups using the shorthand “low, midlle, and
high” ability.

The employer side of the data also enables us to measure firm-level productiv-
ity.We therefore do not use the firm fixed effects that are typically included in the
AKM approach, and whose interpretation has been challenged, see e.g. Eeckhout and
Kircher (2011). We follow the established literature in order to estimate firm-level
total factor productivity (tfp) using Cobb-Douglas production functions and recent
empirical strategies that have originated in Olley and Pakes (1996). We also follow es-
tablished LIAB-based strategies in the empirical implementation, which are detailed
in Data Appendix D. Since it is customary to estimate production functions only for
firms in manufacturing, our subsequent analysis is restricted to this sector.

In summary, we consider the time period 2002-2008, focussing our analysis on
prime-aged males (20-60) who work in manufacturing and reside in West Germany.

4
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2.2 Travel-to-work areas

Our analysis of local labour markets is enabled by the spatial information contained in
the LIAB. The data at our disposal provides information about the place of residence
and the place of work. The spatial unit is the district (consistently coded with
respect to its status on 31.12.2010), West-Germany being partitioned into about 326
districts. As these spatial units are defined administratively, they do not necessarily
reflect the spatial organisation of economic activity and the idea of a local labour
market. We therefore aggregate these administrative spatial units into travel-to-work
areas using the classification of Eckey et al. (2006), which is based on a detailed
factor analysis of actual commuting flows within radii of up to 60 minutes travel
time. Henceforth, we use the labels of travel-to-work areas (TTWA) and local labour
markets interchangeably. This spatial aggregation of West German district results in
108 TTWAs, none of which is smaller than 50,000 inhabitants. We have excluded
Berlin, given its special status as capital city and it being located in East Germany.
The map of Figure 1 depicts these TTWAs. The federal constitutional and political
structure of Germany also manifests itself in its urban structures, since Germany
lacks a predominant center of gravity (such as Paris or London). Finally, in order
to control for the spatial differences in the cost of housing and living, we also use a
district-level house price index based on actual transactions recorded on the largest
German online portal rendered comparable by hedonic price regressions.

2.3 Data Descriptives: Persistent Spatial Heterogeneity, and
Transitions

Table 1: Heterogeneity across all local labour markets

Percentiles
10 50 90

mean unemployment rate 6.04 8.53 12.55
relative house price index 0.59 0.74 0.87
mean daily log-wages 4.27 4.42 4.56
mean worker fixed effects 3.74 3.83 3.93
mean firm productivity (low manuf) 4.42 4.59 4.76
mean firm productivity (low services) 2.84 3.12 3.30
mean firm productivity (high manuf) 4.48 4.64 4.92

Notes: Period 2002-2008, the spatial units are 108 TTWAs. TTWA means computed using weights

given by district-level relative population size. District-level data (population size) and mean unem-

ployment rate obtained from www.regionalstatistik.de (Table 173-01-4 for year 2002, and Table 659-

71-4 averaged over 2002-2008). The house price index is obtained from www.immobilienscout24.de,

for year 2007, expressed relative to TTWA München. Worker fixed effect (FEs) obtained from log

wage regression described in Card et al. (2013), and averaged across the districts of each TTWA using

establishment/district employment levels as weights. Firm productivity (TFP) estimated using the

methodology set out in Appendix C using firm-level LIAB data, based on Olley and Pakes (1996),

and spatially aggregated.
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We document the principal features of our data, first examining the evidence
for persistent spatial heterogeneity across the all local labour markets, and then sum-
marising the transition data. In order to provide greater detail and spatial resolution,
in Data Appendix D, we consider explicitly 8 selected local labour markets.

Figure 1 depicts the spatial distribution of unemployment for 9 quantile groups.
Southern Germany tends to have lower rates, while local unemployment in Lower
Saxony and North Rhine-Westphalia is particulary elevated. It is clear that spa-
tial heterogeneity is substantial. Table 1 reports the 10%/50%/90% deciles of the
marginal distributions of unemployment, wages, relative house prices, as well as lo-
cation specific mean worker fixed effects and firm TFP in manufacturing (low- and
high-tech) and in low services. It is evident that spatial variations are pervasive. For
instance, the 90/10 ratio of local unemployment rates is 2.1, for relative house prices
1.5, and log wages 1.07.

This heterogeneity across local labour markets is not only pervasive but also highly
persistent. For instance, consider the year-to-year Spearman rank correlation of local
unemployment rates. For all TTWAs, the smallest rank correlation is .968, for all
districts it is .975. Even for a ten year lag, the rank correlation for all TTWAs is still
.86.

Table 2: Spatial mobility and job transitions.

total e→ u transitions 558,056 7.92%
total u→ e transitions 547,823 7.77%
total e→ e transitions 693,956 9.85%
total spells 7,046,710

total relocations
within TTWAs [%] 40.63
across TTWAs [%] 59.37

total relocations given transitions into employment (u, e→ e )
within TTWAs [%] 72.70
across TTWAs [%] 27.30

total relocations given transitions into unemployment
within TTWAs [%] 76.54
across TTWAs [%] 23.46

Notes: Based on LIAB. We report the share of spells by type for the window 2002-

2008.

Turning to the transition data, Table 2 reports measures of worker transitions on
the labour market and across locations. The incidence of job-to-job transitions is of
the same magnitude as out-of-job transitions, which we interpret as strong indirect
evidence of the importance of on-the-job search. Our model accommodates both
types of transitions, and both type of searchers are permitted to change location.
Empirically, most job-related mobility is short range, as, given a labour status and
location change, only about 25% change TTWA while three-quarters change location
within their TTWA. All these data features inform our model, which is presented
next.
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3 A Tractable Equilibrium Model of Directed Search

across Local Labour Markets

We proceed to present our dynamic model of spatial search. Building on the directed
search models of of Shi (2009) and Menzio and Shi (2011), we add a spatial per-
spective: Now workers can search within and across local labour markets, and make
optimal location decisions in the face of moving costs. Job searchers might also be
better informed about local job opportunities relative to more distant ones. Our ob-
jective is to build a very parsimonious model. To this end, we (could allow for but)
refrain from allowing some frictional parameters to vary across locations. In what
follows we present the generic model for one type of worker (in the empirical analysis
we further introduce worker heterogeneity by stratifying the analysis by worker types,
allowing some parameters to be segment specific whilst others are segment-invariant).

3.1 The Environment

Time is discrete and continues for ever. The economy is populated by a continuum
of workers with measure 1. Each worker is endowed with an indivisible unit of labour
and maximises the expected sum of periodical consumption discounted by the factor
β ∈ (0, 1).

Economic activity occurs within geographically defined markets or locations, in-
dexed by k ∈ K = {1, ..., N(k)} with N(k) ≥ 2. Workers can move across locations,
whereas firms cannot. Moving from source location l to a new destination location k
is costly, and measured by a cost function ci(l, k) ≥ 0 that depends on the employ-
ment state of the individual i (i ∈ {u, e}). Hence we have ex ante heterogeneity of
workers in terms of relocation costs; in our empirical application, we will introduce
further sources of heterogeneity by segmenting the labour market by industry.

In addition to the endogenous mobility of workers, there are also exogenous relo-
cations: every period a random sample of workers (employed or unemployed) leave
the economy; for simplicity, these transitions are labelled as deaths. The “mortality
rate” τ ∈ [0, 1) is exogenous. Deceased individuals are replaced by an equal measure
of new-born workers. These new entrants are randomly allocated across locations,
join the unemployment pool, and cannot search during their first period.

There is a continuum of firms with positive measure in every location k. Each firm
uses a technology that turns one unit of labour into π(y, µ)+z units of output, where π
is a constant returns to scale, increasing, and concave function. The first component
of productivity, y, is common to all firms and its value lies in Y = {y1, ..., yN(y)}
with N(y) ≥ 2. The second component of productivity, µ, is specific to the location
of the firm µ ∈ {µ1, ..., µN(k)}. The third component of productivity, z, is specific
to a firm-worker pair, and its value lies in Z = {z1, ..., zN(z)} with N(z) ≥ 2. The
aggregate component of productivity y captures aggregate business cycle conditions,
whereas µ captures local differences in productivity driven by e.g. agglomeration
economies (as emphasised by e.g. Combes et al. (2012)). Hence our model exhibits
ex ante heterogeneity on the side of the firm, since firms’ productivities differ spatially
(see also Kaas and Kircher (2015) on the importance of firm heterogeneity). Firms
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can enter freely a location, and inherit the common location-specific productivity
component. In equlibrium, with free entry, firms will be indifferent in which location
to produce since all firms will earn the same profits.

3.1.1 Timing

At the beginning of every period, the state of the economy can be summarised by
ψ = (y, u, g), where y ∈ Y is the aggregate component of productivity, u denotes the
measure of workers who are unemployed in the economy and is given by the sum of
the measures of unemployed individuals in every location, u =

∑
k∈K{uk} ≤ 1 with

uk ∈ [0, 1], and g is a function g : Z ×K → [0, 1] with g(z, k) denoting the measure
of workers who are employed in matches with idiosyncratic productivity z in location
k. Every location k therefore consists of a collection of submarkets indexed by x.

Each period is divided into five stages: births and deaths, separation, search,
matching, and production.

At the separation stage, within each submarket x, and each location k matches
between firms and workers are destroyed with probability de(z, k) ∈ [δ, 1], where
δ ∈ (0, 1) denotes the probability that a match is destroyed for exogenous reasons.
Separated workers must spend one period in unemployment before searching. The
unemployment pool consists of individuals searching for a match (labelled unem-
ployed job-searchers) and individuals who cannot search for one period (labelled un-
employed non-searchers) either because they are new entrants or recently separated.
At the separation stage, within each location k unemployed job-searchers become un-
employed non-searchers with probability du(k) ∈ [0, 1]. The measure of unemployed
non-searchers in location k is denoted nsk ∈ [0, 1], and the corresponding measure of
unemployed job-searchers is given by uk − nsk.

At the search stage, individuals can move and/or search for a job within or across
locations. Unemployed non-searchers move from their current location, l, to a different
location, k with probability ηm(l, k) ∈ [0, 1]. Unemployed job-searchers look for
a job with probability λu ∈ [0, 1], while employed workers search with probability
λe ∈ [0, 1]. The probability that an unemployed individual in location l looks for
a job in a different location, k, is ηu(l, k) ∈ [0, 1]. Similarly, the probability that a
worker employed in a match of productivity z in location l looks for a match in a
different location, k, is ηe(z, l, k) ∈ [0, 1]. At the search stage, firms decide how many
vacancies to post. The cost of maintaining an open vacancy is ξ > 0 per period.

At the matching stage, individuals and vacancies searching in the same location
and submarket meet. The meeting technology is constant returns to scale and can
be expressed as a function of the submarket and location specific vacancy-to-searcher
ratio, θ, i.e. the local labour market tightness. The probability that a job-seeker
meets a vacancy in this submarket is p(θ) and the probability that a vacancy meets
a worker is q(θ) = p(θ)/θ. When a firm meets a job-seeker, nature draws z from the
probability distribution f(z).

As in Menzio and Shi (2011), we allow for learning frictions. The firm-worker pair
do not directly observe their match-specific productivity: they observe s, which is a
signal of z. With probability α ∈ [0, 1], the signal s is equal to z and with probability
(1 − α) the signal s is drawn from f independently of z. At opposite ends of the
spectrum stand the cases of experience goods (α = 0) and inspection goods (α = 1).

8



In the latter case, the quality of the match is known before forming it, in the former
case no information is available. The informativeness of signals may differ across
locations: αll ≥ αlk∀l, k ∈ K.6 Conditional on the signal, s, firms decide to hire the
worker using a selection criterion r. A firm hires a worker if and only if the signal s
about the quality of their match is greater than or equal to r. The probability that
the signal about the quality of the match is above the selection cutoff r is given by
m(r) =

∑
s≥r f(s).

At the production stage, an unemployed individual in location k, produces bk
units of output, where bk ∈ B = {b1, ..., bN(k)} and also enjoys flow utility Auk , where
Auk ∈ Au = {Au1 , ..., AuN(k)}, from local amenities. A worker employed in a match with

idiosyncratic productivity z in location k produces π(y, µk) + z units of output and
also enjoys flow utility Aek, where Aek ∈ Ae = {Ae1, ..., AeN(k)}, from local amenities.
After production, the firm-worker pair observe z. At the end of this stage, nature
draws next period’s aggregate component of productivity, ŷ, from the probability
distribution φ(ŷ|y), where φ : Y × Y → [0, 1].

3.1.2 The Labour Market

The labour market is organised in a continuum of submarkets indexed by (x, r, k),
where x is the lifetime utility offered by a firm to a worker, r is the selection criterion,
and k is the location of the submarket. As is usual in this type of directed search
model, employment contracts are assumed to be complete in the sense that a contract
can specify the wage, w, the separation probability, de, the probability of search in a
different location, ηe, and the submarket where the worker searches while on the job,
(x, r, k), as functions of the history of the aggregate state of the economy and the
quality of the match, z. The firm maximizes its profits by choosing the contingencies
for de, ηe, x, and r so as to maximize the joint value of the match, and by choosing
the contingencies for w so as to deliver the promised value x. The assumption of
complete contracts captures the view that firms and workers have an incentive to find
ways in practice to maximise the joint gains from trade.

3.2 Transitions within and across Local Labour Markets

We consider in detail the possible transitions that could be experienced by a worker in
a particular employment state, location, and submarket since these are the principal
objects of the empirical investigation. We then establish for each location l next
period’s measures of non-searchers n̂sl, of unemployed job-seekers ûl, and of employed
workers of productivity z, ĝ(z, l). These transitions are, of course, based on the
optimal choices of workers and firms. In this section, we take these as given, and
defer their derivations to Section 4. For notational simplicity, the optimal policy
functions are indicated by the max superscript.

6Kennan and Walker (2011) assume that workers only know the wage in their home location,
and need to move to other locations to determine the local wage. Schmutz and Sidibé (2018) also
assume the existence of informational frictions across locations.
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3.2.1 The Unemployed: Non-searchers and Job-seekers

At the beginning of the period, a measure τ of individuals (employed and unemployed)
leave the economy while an equal measure of new entrants are equally distributed
across locations (τ/K per location) and join the unemployment pool. New entrants
are not allowed to search for a match (hence the label non-searchers ns), but are
allowed to move to a different location.

Consider such a non-searchers in location l. These consist of non-searchers who
have originated in location k′ and have optimally moved to location l, and of non-
searchers who have decided to stay in l. We denote the 0-1 probability of the for-
mer event by ηmaxm (k′, l), which equals 1 if the worker originating in location k′ op-
timally chooses location l, and 0 otherwise. The staying probability is therefore
1 −

∑
k′ 6=l η

max
m (l, k′) ≡ 1 − ηmaxm (l). Apart form these new entrants in l or k′ who

stayed in or moved to l, n̂sl includes: (a) individuals who entered the period as unem-
ployed job-seekers in l or k′, decided to stop searching with source location-specific
probability du(l) or du(k

′), and stayed in or moved to l; and (b) individuals who
entered the period as employed job seekers in l or k′, were separated with source
location-specific probability de(z, l) or de(z, k

′), and stayed in or moved to l. The
measure of unemployed non-searchers in location l at the end of the search stage
therefore equals

n̂sl =
τ

N(k)

{
[1− ηmaxm (l)] +

∑
k′∈K

ηmaxm (k′, l)

}
(1)

+ (1− τ)

{
[1− ηmaxm (l)]d̃(l) +

∑
k′∈K

ηmaxm (k′, l)d̃(k′)

}

where d̃(k′) = du(k
′)uk′+

∑
z∈Z [de(z, k

′)g(z, k′)]. Consider next an individual who en-
ters the period unemployed in location l. This individual does not leave the economy
with probability 1 − τ , and enters the search stage as an unemployed job-searcher
with probability 1− du(l). At the beginning of the search stage, the individual looks
for potential matches in location l with probability 1−ηmaxu (l). With complementary
probability ηmaxu (l), she searches in a different location. At the matching stage, the
unemployed job-seeker meets a firm with probability λu p(θ

max
u (l)), and a match with

idiosyncratic productivity z = s is created with probability hmaxu (s)[a+ (1− a)f(s)],
while a match with z′ 6= s is created with probability hmaxu (s)(1− a)f(z′). Therefore,
at the production stage, the individual job-seeker is still unemployed with proba-
bility 1 − λu p(θ

max
u (l))mmax

u (l), where mmax
u (l) =

∑
s[h

max
u (s, l)f(s)], while she is

employed in a match of productivity z′ with probability λu p(θ
max
u (l)) [ahmaxu (z′, l) +

(1− a)mmax
u (l)]f(z′).

Given these possible transitions, the measure of unemployed individuals in location
l at the production stage ûl includes the measure of unemployed non-searchers n̂sl,
and the measure of individuals who entered the period as unemployed job-seekers in
location l, remained in the economy, searched for a job, but failed to find a match in
l or in any other location k′:

ûl =ul × (1− τ)(1− du(l)) × [1− λu p(θmaxu (l))mmax
u (l)] + n̂sl (2)
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3.2.2 Employed Workers

An individual who enters the period employed in a match of productivity z in lo-
cation l reaches the search stage with probability (1 − τ)(1 − de(z, l)). On-the-job
searchers decide optimally where to locate at the beginning of the search stage. The
worker searches in a different location with 0-1 probability ηmaxe (z, l), and stays with
probability 1−ηmaxe (z, l). At the same time workers in matches of productivity z′ 6= z
in other locations k decide to optimally relocate to l with probability ηmaxe (z′, k′, l),
which equals 1 if this worker originating in location k′ optimally chooses location l,
and 0 otherwise.

At the matching stage, the worker meets a new firm with probability λe p(θ
max
e (z, l)).

A match of idiosyncratic productivity z = s is created with probability hmaxe (s, z, l)[a+
(1 − a)f(s)], while a match with productivity z′ 6= s is created with probabil-
ity hmaxe (s, z, l)(1 − a)f(z′). The worker stays in her original job with probability
1− λe p(θmaxe (z, l))mmax

e (z, l) where mmax
e (z, l) =

∑
s[h

max
e (s, z, l)f(s)].

The production stage measure of individuals employed in matches of productivity
z in location l, ĝ(z, l), therefore consists of workers who (a) entered the period em-
ployed in a match of productivity z in l and did not change employment status; or
(b) entered the period employed in a match of productivity z′ 6= z in l or k′ and found
a match of productivity z in l; or (c) entered the period as unemployed job-seekers
in l or k′ and found a match of productivity z in l. In summary, we have

ĝ(z, l) = (1− τ)× {g(z, l)[1− de(z, l)][1− λe p(θmaxe (z, l))mmax
e (z, l)]

+
∑
z′∈Z

g(z′, l)[1− de(z′, l)][1− ηmaxe (z′, l)]γ̃e(l, l, z
′, z) (3)

+
∑
k′∈K

∑
z′∈Z

g(z′, k′)[1− de(z′, k′)]ηmaxe (z′, k′, l)γ̃e(k
′, l, z′, z)

+ ul[1− du(l)][1− ηmaxu (l)]γ̃u(l, z) +
∑
k′∈K

uk′ [1− du(k′)]ηmaxm (k′)γ̃u(k
′, z) }

with

γ̃u(k
′, z) ≡ λup(θ

max
u (k′))[αhmaxu (z, k′) + (1− α)mmax

u (k′)]f(z)

γ̃e(k
′, l, z′, z) ≡ λep(θ

max
e (z′, k′, l))[αhmaxe (z, z′, k′) + (1− α)mmax

e (z′, k′)]f(z)

4 The Decentralised Economy

We proceed to discuss the optimal search behaviour of workers in the decentralised
economy, the optimal behaviour of firms, and the resulting equilibrium. Appendix A
presents in detail the associated problem of the central social planner. In line with
the earlier literature on competitve and directed search, it will turn out that the
decentralised equilibrium is socially efficient.

4.1 Value Functions

We proceed to consider in detail the value function of each worker by labour market
status. The decision problem of where and in which submarket to search is broken
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down into two stages. In the first stage, a worker makes pairwise comparisons between
the current location l and any possible destination k. In the second stage, the worker
then picks the best alternative.

Consider an unemployed individual in location l at the beginning of the production
stage. Her lifetime utility is denoted U(l, y). In the current period, she produces bl
units of output and enjoys flow utility Aul from local amenities. With probability
(1− τ), she survives until the next period. At the separation stage, with probability
du(l, ŷ) she decides to quit to a state of non-searching, which gives her lifetime utility
Jmaxu (l, ŷ), or to enter the search stage looking for a match. During the search stage,
she decides where to search for a match by comparing the potential net gains from
searching in each submarket within every location. The unemployed individual’s
choice of destination submarket and location is made optimally in two stages: first,
she chooses the submarket within each location that maximises her value, and then
selects the destination location that maximises the net gain from search. Suppose
the optimally chosen destination submarket is x in location k. At the matching
stage, she meets a vacancy that leads to an acceptable match giving her expected
lifetime utility x with probability p(θ(x, r, l, k, ŷ))m(l, k, r). If source and destination
locations differ (k 6= l), the individual has to incur the moving cost cu(l, k). With
probability 1− p(θ(x, r, l, k, ŷ))m(l, k, r), she fails to meet an acceptable vacancy, so
her employment status does not change and her expected lifetime utility is U(l, ŷ).
The unemployed job searcher’s value is given by:

U(l, y) = bl + Aul + β(1− τ)Emax
du
{duJmaxu (l, ŷ)

+ (1− du)[U(l, ŷ) + λuD
max
u (U(l, ŷ), l, ŷ)]}, (4)

where Dmax
u is the total return to search function for unemployed job-searchers, giving

the highest net gain from searching across all possible destination locations

Dmax
u (U, l, y) = max{0, Du(U, l, 1, y), Du(U, l, 2, y), . . . , Du(U, l,K, y)} (5)

and Du is the return to search function for unemployed job-searchers, giving the
highest net return from searching across all possible submarkets within a destination
location

Du(U, l, k, y) = max
x,r,ηu
{(1− ηu) [p(θ(x, r, l, l, y))m(l, l, r)(x− U)]

+ηu [p(θ(x, r, l, k, y))m(l, k, r)(x− U − cu(l, k))]} (6)

Consider now an individual who became an unemployed non-searcher during the
separation stage. At the beginning of the search stage, the unemployed non-searcher
decides optimally whether to relocate and where. This choice is made optimally in
two stages: first the unemployed non-searcher makes pairwise comparisons between
her value in the current location l and her value in any possible destination location
k net of moving costs, J(l, k, y). In the second stage, she chooses the location k∗

that gives her the highest net value, Jmax(l, ) = J(l, k∗, ). For the remainder of the
period, the unemployed non-searcher is inactive in the labour market, engaging solely
in home production, bk∗ . Hence, the problem solved by an unemployed non-searcher
in location l is given by

Jmaxu (l, y) = max{Ju(l, 1, y), Ju(l, 2, y), . . . , Ju(l,K, y)} (7)
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where

Ju(l, k, y) = max
ηm
{(1− ηm)U(l, y) + ηm[U(k, y)− cu(l, k)]}. (8)

Finally, consider a firm-worker pair in location l with match-specific productivity
z. At the beginning of the production stage, the joint value of this match, denoted
Je(z, l, y), is given by the sum of the present discounted value of the worker’s utility
and the firm’s profits. In the current period, the firm-worker pair produce π(y, µl)+z
units of output, and the worker enjoys flow utility Ael from local amenities. With
probability (1−τ), the worker survives until the next period. At the separation stage,
with probability de(z, l, ŷ) the match is destroyed: the worker joins the unemployment
pool as a non-searcher with lifetime utility Jmaxu (l, ŷ), and the firm becomes idle with
zero profit. With probability (1− de(z, l, ŷ)) the match survives and the firm-worker
pair enter the search stage. During the search stage, with probability λe, the worker
searches for new matches: she decides where to search by comparing the potential net
gains from searching in each submarket within every location. The worker’s choice of
destination submarket and location is made optimally in two stages: first, she chooses
the submarket within each location that maximises the gain from search, and then
selects the destination location that maximises the net gain from search.7 Suppose
the optimally chosen destination submarket is x in location k. At the matching stage,
the worker meets a vacancy that leads to an acceptable match giving her expected
lifetime utility x with probability p(θ(x, r, l, k, ŷ))m(l, k, r). If source and destination
locations differ (k 6= l), the worker has to incur the moving cost ce(l, k). With
probability 1 − p(θ(x, r, l, k, ŷ))m(l, k, r), the worker does not meet an acceptable
vacancy, so she remains employed in a match of productivity z in location l with joint
value Je(z, l, ŷ). The joint value of this match is given by:

Je(z, l, y) = π(y, µl) + z + Ael + β(1− τ)E max
de
{deJmaxu (l, ŷ)

+ (1− de) [Je(z, l, ŷ) + λeD
max
e (Je, z, l, ŷ)]}

(9)

where Dmax
e is the total return to search function for employed job-searchers, giving

the highest net gain from searching across all possible destination locations

Dmax
e (Je, z, l, y) = max{0, De(Je, z, l, 1, y), De(Je, z, l, 2, y), .., De(Je, z, l,K, y)} (10)

and De is the return to search function for employed job-searchers, giving the highest
net return from searching across all possible submarkets within a destination location

De(Je, z, l, k, y) = max
x,r,ηe
{(1− ηe) [p(θ(x, r, l, l, y))m(l, l, r)(x− Je(z, l, y))]

+ηe [p(θ(x, r, l, k, y))m(l, k, r)(x− Je(z, l, y)− ce(l, k))]} (11)

7Complete contracts imply that workers internalise the effect of their search decisions on the
profits of the firm. Therefore, the solution to the search problem of employed workers should lead
to a match that yields the maximum joint value net of search costs.
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4.2 Vacancy Creation

The decision of firms to post vacancies in a submarket (x, k, r) is made optimally
by weighing up the costs and benefits of vacancy creation at the margin. The cost
of posting a vacancy is ξ. The expected benefit of posting a vacancy in submarket
(x, k, r) is given by the product between the probability that the firm fills the vacancy,
q(θ(x, r, l, y)), and the value to the firm from filling the vacancy,

∑
s≥r {(αJe(s, k, ŷ)+

(1− α)EzJe(z, k, y)− x) f(s)}. A firm never creates a vacancy in any submarket
where the cost of posting the vacancy ξ exceeds the expected benefit of matching
with a worker. By contrast, if the expected benefit exceeds the cost of posting a
vacancy, then the firm would seek to open as many vacancies as possible in that
market. The free entry of firms guarantees that any profits are competed away, so
submarket tightness, θ, is such that

ξ ≥ q(θ(x, r, k, y))
∑
s≥r

{(αJe(s, k, y) + (1− α)EzJe(z, k, y)− x) f(s)} (12)

and θ(x, r, k, y) ≥ 0 with complementary slackness. Condition (12) ensures that
the market tightness function, θ is consistent with the incentives of firms to create
vacancies.

4.3 Policy Functions

All policy functions reflect the two-stage optimisation strategy of workers. In par-
ticular, for unemployed job-searchers, the policy functions pertaining to the pairwise
location comparison of stage one, given by equation (6), are xu(l, k, ŷ), ru(l, k, ŷ),
ηu(l, k, ŷ), and for the optimal location choice in stage two, given by equation (5),
xmaxu (l, ŷ), rmaxu (l, ŷ), ηmaxu (l, ŷ). du(l, ŷ) is the decision of unemployed job-searchers to
quit to a state of non-searching and solves equation (4). Analogously, for unemployed
non-searchers, we have the first stage policy function ηm(l, k, ŷ), and the second stage
policy function ηmaxm (l, ŷ). The policy functions for employed job-searchers follow the
same logic: for the first stage we have xe(z, l, k, ŷ), re(z, l, k, ŷ), ηe(z, l, k, ŷ), for the
second stage these are xmaxe (z, l, ŷ), rmaxe (z, l, ŷ), ηmaxe (z, l, ŷ). de(z, l, ŷ) is the decision
of the firm-worker pair to destroy the match. Finally, we observe that the policy func-
tions can be expressed in terms of θ by solving (12): for the first stage problem we
thus obtain θe(z, l, k, y) and θu(l, k, y), and for the second stage problem θmaxe (z, l, y)
and θmaxu (l, y) .

4.4 Equilibrium: Definition, Tractability and Efficiency

An equilibrium consists of a set of market tightness functions for unemployed job-
searchers, (θu, θ

max
u ), a set of market tightness functions for employed workers (θe, θ

max
e ),

a value function for unemployed non-searchers, Jmaxu , a set of policy functions (ηm,
ηmaxm ) for unemployed non-searchers, a value function for unemployed job-searchers,
U , a set of policy functions for unemployed job-searchers, (xu(l, k, y), ru(l, k, y),
ηu(l, k, y), xmaxu (l, y), rmaxu (l, y), ηmaxu (l, y)), a joint value function for firm-worker
matches, Je, and a set of policy functions for firm-worker matches, (xe(z, l, k, y),
re(z, l, k, y), ηe(z, l, k, y), xmaxe (z, l, y), rmaxe (z, l, y), ηmaxe (z, l, y), de(z, l, y)). These
functions satisfy the following conditions:
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i. (θu(l, k, y), θmaxu (l, y)) satisfy (12), (5), and (6);

ii. (θe(z, l, k, y), θmaxe (z, l, y)) satisfy (12), (10), and (11);

iii. Jmaxu satisfies (7) and (8), and (ηm(l, k, y), ηmaxm (l, y)) are the associated policy
functions;

iv. U satisfies (4), (5), and (6), and (xu(l, k, ŷ), ru(l, k, ŷ), ηu(l, k, ŷ), xmaxu (l, ŷ),
rmaxu (l, ŷ), ηmaxu (l, ŷ), du(l, y)) are the associated policy functions;

v. Je satisfies (12), (10), and (11), and (xe(z, l, k, y), re(z, l, k, y), ηe(z, l, k, y), xmaxe (z, l, y),
rmaxe (z, l, y), ηmaxe (z, l, y), de(z, l, y)) are the associated policy functions.

These conditions ensure that the strategies of each agent are optimal given the strate-
gies of other agents.

In line with the earlier literature on competitive and directed (non-spatial) search
we observe that the equilibrium agents’ value functions and policy functions depend
on the aggregate state of the economy only through aggregate productivity and not
through the distribution of workers across employment states or locations. The equi-
librium is therefore block recursive, and computations tractable. Furthermore, the
decentralised equilibrium coincides with the solution of the social planner’s problem,
and is therefore socially efficient. Intuitively, these properties follow from the direct-
edness of job search: a worker self-selects into the submarket that maximises her
expected gains from search, by trading off employment probabilities and the value of
moving from their current position to a new job/location. In particular, by equation
(12), unemployed/low value workers search in submarkets where the probability of
entering is high and the gain is low, while high value workers search in submarkets
where the probability of entering is low and the gain is high. Firms in a submarket
therefore know who they will meet and that their job offer will not be rejected. There-
fore, a firm’s value from meeting a worker in a particular submarket is independent
of the distribution of workers and so is the tightness in this submarket.

We proceed to estimate structurally this search model using individual level data
on transitions across labour market states and geographical transitions within and
across local labour markets.

5 Empirical Implementation

The model is estimated using our individual level transition data from the LIAB
employer-employee panel. In order to maintain the spatial representativeness of this
administrative dataset, we consider only the largest 30 TTWAs in West Germany
(excluding Berlin). In our baseline model, we abstract from spatial learning frictions,
αl,l = αl,k = 1, so close and distant jobs are inspection goods. In order to accom-
modate worker heterogeneity, we stratify workers into groups by skill level, age, and
industry. We call a particular skill/age/industry cell a segment, and we have 12 such
segments. Our objective is to estimate a parsimonious model. To this end, we do
not allow the frictional parameters (δ, λe, λu) and the vacancy posting cost ξ to vary
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across locations,8 but they are allowed to vary by segment. The parameters in our
amenity and moving costs function are segment invariant. Overall, we will estimate
20 parameters.9

• Give details / definitions about stratification. It might also be better to replace
Appendix D with a new one for the data at hand: Some summary stats for the
30 TTWAs, perhaps by segment.

5.1 Specifications

As regards the production function, we combine an aggregate component (y), a
location-specific component (µl for location l), and a match-specific component (z).
Location and match specific components are allowed to differ by subindustry. y fol-
lows a two-state Markov process with unconditional mean 1. z is given, as in Menzio
and Shi (2011), by a discrete approximation of a Weibull distribution with mean µz,
scale σz, and shape νz. Its dispersion is set as to reflect the global dispersion of the
firm fixed effects. The location-specific component µl has been set to the rescaled de-
viation of the firm TFP in that location for the specific subindustry from the overall
mean, i.e. by subindustry µl = β1 + β2(FFEl− ¯FFE) where ¯FFE = K−1

∑
l FFEl.

We combine these 3 components using a production function given by π(y, µl) + z,

where π = 2(0.5y1/2 + 0.5µ
1/2
l )2. Our production technology combines a CES produc-

tion function and an additive match specific component, implying substitutability
between the match specific component and the aggregate/location specific compo-
nents, and, at the same time, some complementarity between the aggregate and the
location specific components.

Amenities are assumed to be a summary measure of all pull factors that explain
population distributions over and above the distributions implied by productivity
differences. Specifically, we use the following parametric specification for amenities:

Aek = α1 + α2 ×Dec(pop, k) + α3 ×
∑

i∈{sector}

[Dec(popi, k)−Dec(µi, k)] (13)

where Dec(pop, k) is the position of region k (i.e. the decile) in the distribution of
employed workers across regions; similarly, Dec(popi, k) is is the position of region k
(i.e. the decile) in the distribution of sector i workers across regions.10

We assume that the flow utility from amenities in location k enjoyed by the unem-
ployed, Auk , is a constant share of the corresponding flow utility enjoyed by employed
workers, Aek, and that home productivity in this location, bk, is also a constant share
of average productivity across all sectors in this location. We set these constant shares

8Observe, though, that the job finding probability λep(θ(.)) is location dependent because θ(.)
is.

9Schmutz and Sidibé (2018) estimate 913 parameters, having reduced the dimensionality of their
problem by also parametrising the functions determining moving costs and informational frictions.

10Diamond (2015) takes the complementary approach of enumerating explicitly specific dimen-
sions of amenities. By contrast, Kennan and Walker (2011) capture amenities by estimating their
model including fixed effects for different locations/regions.
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at 50%, a proportion approximately equal to the average unemployment replacement
rate in Germany between 2002 and 2008 (DICE Database 2013).

Turning to the moving cost function, we take into account several factors. Mov-
ing costs (monetary and psychological) might be a function of the physical distance
between origin (l) and potential destination (k), which might also reflect the distinct
regional identities and the federal structure of Germany. Also taken into account are
difference between housing costs. In order to capture the idea that adjusting to life in
a big city is more costly than settling in a smaller place, we also include an indicator
for whether two TTWAs l and k include both one of the five largest German cities.
We also allow moving costs to differ by segment since some groups may be more mo-
bile than others (e.g. the young age group). Since moving costs (psychological and
direct) might differ between employed and unemployed, we also include an indicator
for labour market status (a dummy equal to one if the individual is unemployed). In
summary, the moving cost function is for current location l and potential destination
k:

c(l, k) =
(
αu × 1{u} + 1

)
×

 ∑
i∈{segment}

αsi × 1{i=segment} +

αc + αbc × 1{big city} + αhp ×∆hp(l, k) + αd × distance(l, k)

}
(14)

We fix some global parameters at plausible values. The discount factor β is set
to 0.984, which corresponds to an annual discount rate of 5%. The elasticity of the
matching function γ is set to 0.35, a value similar to the elasticity of the matching
function estimated by Kohlbrecher et al. (2016) using the LIAB dataset.

5.2 Estimation Strategy

The model is evaluated, for a given set of parameters, by value function iterations.
The parameters themselves are estimated by minimising the distance between a set
of empirical moments of our transition data, and the corresponding simulated model-
based moments. Specifically, collect all parameters to be estimated in a vector Θ,
denote the ith moment calculated from the data by m̂i and the corresponding model-
simulated moment by mi(Θ). The GMM criterion to be minimised is

GMM(Θ) =
∑
i

wi

(
m̂i −mi(Θ)

m̂i

)2

(15)

where wi is a weight (set to unity currently, wi ≡ 1); we standardize by the moments
themselves instead of their standard errors (which are less precisely estimated). We
take into account the local level of unemployment rates, the transition between labour
markets states in each location (i.e. e → u, e → e, u → e) as well as moving rates
between any two locations. These moments are stated explicitly in Table B1 of
Appendix B. In particular, we use 330 moments: local unemployment (30 moments,
since K = 30), relocations into each travel to work area (30 moments), local sector-
specific job-to-job transitions (3 segments × 30 moments), local sector-specific job-
to-unemployment transitions (3 segments × 30 moments), and local sector-specific
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employment shares (3 segments × 30 moments). These moments are used to estimate
the sector-specific frictional parameters (δ, λe), the vacancy posting cost ξ, and the
parameters of the moving cost and amenities function, a total of 8 + 4 × S = 20
parameters where S = 3 is the number of sectors. The objective is to estimate a
parsimonious empirical model that avoids the danger of over-fitting that arises were
the frictional parameters and cells of a moving cost matrix allowed to vary across
locations without restrictions.

For a large number of locations the computations are time-consuming. The min-
imum distance criterion is therefore minimised using an evolutionary / genetic al-
gorithm which is designed to locate the global minimum of the objective function
relatively rapidly because computations are parallelised across processors. Computa-
tional details as well as validation experiments, demonstrating the good performance
of our estimation strategy, are collected in Appendix B.

Statistical inference for Θ in this GMM framework is standard, see e.g. Wooldridge
(2002, chapter 14). In practice, in order to estimate the derivative of each moment
with respect to each parameter, ∂m(Θ)/∂Θ, we follow Lise and Robin (2017), since
the moments are not necessarily smooth functions of the parameters: In particular,
we compute a partial derivative by simulating the model, taking the parameter in
question from a grid centered about the estimated value while keeping all other pa-
rameters at their estimated values, computing the new moment function, fitting a
high order polynomial for each moment, and estimating the partial derivatives by the
derivatives of such fitted polynomials evaluated at Θ̂.

5.3 Identification

We discuss how transition data within and across labour market states and locations
and their spatial variation, as well as the observed spatial variation in productivities
and populations, identify the parameters of our model. Since the policy functions of
the model are not available in closed form, it is impossible to obtain formal classic
identification demonstrations. Instead, we follow the literature and consider the be-
haviour of the estimation objective function in the context of a simulation in order to
provide a numerical illustration of identification. Appendix B.4 presents the results
of two experiments, which demonstrate that our model is identified and that our es-
timation algorithm works very well.
In what follows, we consider informally the sources of identification that reflect both
incentives to relocate (productivity and amenity gains) and barriers (moving costs).
Observed high productivity in location k, a high population share, and a high inflow
rate are jointly indicative of sufficiently low moving costs. By contrast, high pro-
ductivity and low a population share is consistent with both high moving costs and
low amenity values, but the two scenarios could be distinguished by sufficiently high
population outflow rates. Similarly, observed low local productivity and a high popu-
lation share is consistent with either high mobility costs or a high local amentiy value,
but sufficiently high population inflow rates would point to the latter. In order to dis-
cipline moving costs further, we use the convergence of the model to the steady state
starting from arbitrary initial population distributions: in the presence of excessively
high moving costs that suffocates relocations, the model’s steady state distribution
would then look very different from the observed population distribution, as would
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the relocation rates. Job separation and job search probabilities as well as vacancy
posting costs are principally identified by transitions within local labour markets.
Finally, we observe that our rich transition data contribute complementary sources of
identifying varation; in particular, for workers employed in two consecutive periods,
we have three subgroups, namely location stayers and firm non-switchers, (location)
stayers and switchers, and movers (who therefore are also switchers). As regards the
unemployed, we have both stayers and movers.

5.4 Results (Preliminary)

Tables 4 and 3 report the results of our GMM estimation. Table 4 presents the
sector-specific estimated model parameters for manufacturing and services. Table 3
reports global (sector-invariant) and sector-specific moments aggregated across travel-
to-work-areas. The model fits all sector specific data moments very well, indicating
that our strategy of introducing heterogeneity by partitioning the labour market into
segments works. Our model-simulated global (non-sector specific) moments are also
close to the corresponding data moments indicating that our model captures the
main features of the aggregate labour market, and, more importantly, the relocation
patterns observed in the data.

The sector-specific data moments suggest that the incidence of labour market
transitions in the service sector is higher than in the manufacturing sector: both
job-to-job transition and job separation rates in the service sector are approximately
two times higher than the corresponding rates observed in the manufacturing sector.
This implies larger transition parameter estimates (λe, δ) in the service sector: our
estimated sector-specific parameters, reported in Table 4, are indeed larger in services
than in manufacturing. Vacancy costs are estimated to be lower in the service sector
than in manufacturing (approximately 1/3 of manufacturing costs), as one would
expect. Finally, the estimated sector specific parameters of the cost function suggest
that moving costs are highest for workers in the service sector and lowest in the
manufacturing sector.

Table 3 reports that our model fits the data well by comparing global and sector-
specific moments aggregated across travel-to-work areas. To illustrate how well our
model performs in matching spatial heterogeneity in the data, we present Figure (2),
which demonstrates that our model describes the spatial variation of employment
in the aggregate. Our model’s performance in matching spatial heterogeneity in
employment in the different sectors is further evidenced by the high Spearman rank
correlations between data- and model-computed local employment shares: 0.61 in
manufacturing, 0.58 in services. Figure (3) demonstrates that our model does a very
good job in matching aggregate (across sectors) relocation rates into travel-to-work
areas: the Spearman rank correlation between data- and model-computed relocation
rates is 0.726.

5.5 Counterfactual Experiments (Preliminary)

In Section 5.5.1, we show how a reduction in moving costs can affect worker mobility.
Further experiments are in progress.
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Table 3: Model Fit

data model
unemployment 2.760% 1.850%
relocations 0.336% 0.329%

Manufacturing Services
data model data model

e → e transitions 2.14% 1.74% 4.83% 3.20%
e → u transitions 1.06% 1.10% 2.22% 1.91%

Notes: Time unit is a quarter. Based on LIAB for years 2002-08. Esti-

mation by GMM, using 8 ×K = 240 moments (where K = 30 denotes

locations), to estimate 8 + 4× S = 16 parameters (where S = 2 denotes

sectors). Specifically, the global (non-sector specific) estimated parame-

ters in the amenities and moving cost functions are: α1 − α3 from (13)

and αc, αbc, αhp, αd, αu from (14); the remaining 8 sector-specific pa-

rameters are presented in Table 4. The GMM criterion (15) is minimised

by our evolutionary algorithm (see Appendix B.3).

Table 4: Sector Specific Param-
eter Estimates

Manufacturing Services
ξ 4.7263 1.6324
δ 0.0088 0.0176
λe 0.5251 0.7919
αs 4.0515 6.3535

Notes: Time unit is a quarter. Based

on LIAB for years 2002-08. Estimation

by GMM, using 8 ×K = 330 moments

(where K = 30 denotes locations). The

GMM criterion (15) is minimised by our

evolutionary algorithm (see Appendix

B.3).

5.5.1 Reducing Moving Costs

To illustrate how our model can provide useful insights into the motivations of workers
to move across local labour markets, we conduct a counterfactual experiment: using
our estimated model parameters, see Table 4, and the corresponding moments, see
Table 3, as a benchmark, we gradually decrease moving costs and recalculate the
global (sector-invariant) and sector specific moments. The results are reported in
Table 5.

A decrease in moving costs by 25% increases relocations by a factor of 1.6. Decreas-
ing moving costs by 75%, further increases relocations. In both cases, unemployment
falls in response to these changes, but the decrease is small. Setting moving costs to
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Figure 2: Employment across 30 locations

Aggregate Employment: LIAB Aggregate Employment: Model

Notes: Local employment in manufacturing, services, and financial services in the LIAB

data (left) and in the model (right), arranged into 9 quantile groups. Using LIAB 2005

data and model generated data, we express the population of employed workers in these

three sectors in every TTWA as a share of the population of all workers employed in these

sectors across the 30 TTWAs.

Figure 3: Relocation rates

LIAB relocations Model relocations

Notes: Relocation rates into TTWAs in the LIAB data (left) and in the model (right).

zero makes relocations shoot up to 3.7% of total spells, suggesting that even moderate
moving costs play a significant role in the allocation of workers across local labour
markets. The effect of zero moving costs on unemployment is not significant, suggest-
ing that lower moving costs lead to a re-allocation of workers across TTWAs: workers
are more likely to move to high-productivity TTWAs even if job-queue lengths are
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longer.
An important observation is the sectoral heterogeneity in the responses to lower

moving costs, captured entirely by varying job-to-job transition rates; job separations
are almost unaffected by moving costs. In the service sector, job-to-job transitions
respond only to sizeable decreases in moving costs (75%) and more than triple relative
to the baseline if moving costs are eliminated. By contrast, the manufacturing sector
exhibits the lowest sensitivity to moving costs: job-to-job transition rates remain
almost unaltered until moving costs are set to zero.

Table 5: Counterfactual Experiments: Reducing moving costs

Baseline 75% cost 25% cost no cost
relocations 0.329% 0.510% 0.674% 3.659%
unemployment 1.850% 1.826% 1.769% 1.651%
Manufacturing
e → e transitions 1.74% 1.75% 1.86% 5.65%
e → u transitions 1.10% 1.10% 1.07% 1.12%
Services
e → e transitions 3.20% 3.21% 5.06% 10.15%
e → u transitions 1.91% 1.90% 1.93% 1.96%

6 Conclusion

We have built a general equilibrium model of directed search on-the-job, where work-
ers are allowed to search within and across regional labour markets that differ in terms
of firms’ productivities. Workers’ job search yields an equilibrium characterised by a
spatial distribution of wages and unemployment, and rich dynamics as workers expe-
rience transitions between different labour market states and between regional labour
markets.
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Appendices

The structure of this Appendix is as follows:

• Appendix A presents in detail the Social Planner’s Problem. We state the Plan-
ner’s value function, and demonstrate that it can be decomposed into a set of
smaller problems, labelled the component value functions. We then characterise
the solution to the Planner’s problem that enables us to establish who moves,
when and where.

• In Appendix B we provide details of our estimation algorithm and report the
results of a validation exercise.

• In Appendix C we provide details of our estimation of firm productivities.

• In Data Appendix D, we illustrate in some greater detail the heterogeneity
among local labour markets and the geographic mobility among them by fo-
cussing on 8 selected travel-to-work areas.
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A The Social Planner’s Problem

At the beginning of every period, the social planner observes the aggregate state of the
economy ψ = (y, u, g). Births and deaths occur exogenously. At the separation stage,
the planner chooses the probability de(z, l) of destroying a match with productivity
z in location l, Z ×K → [δ, 1], and the probability du(l) with which an unemployed
job-searcher in location l stops searching for a job, K → [0, 1].

The social planner takes decisions in two steps. In the first step, the plan-
ner makes pairwise comparisons between an individual’s current value in her lo-
cation/employment state/submarket and her value in all possible destination loca-
tions/employment states/submarkets. In the second step, the planner chooses the
destination location/employment state/submarket that maximises the individual’s
value. To maintain notational transparency, we denote the policy function chosen
by the planner in the second step using a max superscript. Therefore, at the search
stage, the social planner makes the following choices in two steps:

• the planner chooses the probability with which an unemployed non-searcher in
l would relocate to any possible destination location k ∈ K, ηm(l, k): K×K →
[0, 1]; given this set of choices, the planner chooses the probability that an
unemployed non-searcher in location l moves to a different location, ηmaxm (l):
K → [0, 1];
• the planner chooses the probability with which an unemployed job-seeker in

location l would search for a job in any possible destination location k ∈ K,
ηu(l, k): K × K → [0, 1]; given this set of choices, the planner chooses the
probability that an unemployed job-seeker in l searches in a different location,
ηmaxu (l): K → [0, 1];
• the planner chooses the probability with which a job-seeker currently employed

in a match of productivity z in location l, would search for a job in any possible
destination location k ∈ K, ηe(z, l, k): Z × K × K → [0, 1]; given this set
of choices, the planner chooses the probability that a worker in a match with
productivity z in location l searches for a job in a different location, ηmaxe (z, l):
Z ×K → [0, 1];
• for unemployed job-seekers in location l, the planner chooses the tightness at any

possible destination submarket k ∈ K, θu(l, k): K ×K → R+; given this set of
choices, the planner chooses the tightness at the submarket where unemployed
job-seekers in l look for a match, θmaxu (l): K → R+;
• for job-seekers employed in matches of productivity z in location l, the planner

chooses the tightness at any possible destination submarket k ∈ K, θe(z, l, k):
Z×K×K → R+; given this set of choices, the planner chooses the tightness at
the submarket where workers employed in matches of productivity z in location
l search for a job, θmaxe (z, l): Z ×K → R+.

At the matching stage, the social planner makes the following choices in two steps:

• the planner chooses the probability with which a meeting between an unem-
ployed job-seeker in location l and a firm in any possible destination location
k ∈ K is turned into a match, given the signal s, hu(s, l, k): Z×K×K → [0, 1];
given this set of choices, the planner chooses the probability that an unemployed
job-seeker in l will match with a firm conditional on s, hmaxu (s, l): Z×K → [0, 1];
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• the planner chooses the probability with which a meeting between a worker
employed in a match with productivity z in location l and a firm in any possible
destination location k ∈ K is turned into a match given the signal s, he(s, z, l, k):
Z × Z × K × K → [0, 1]; given this set of choices, the planner chooses the
probability that a worker employed in a match of productivity z in location l
will match with a firm conditional on s: hmaxe (s, z, l): Z ×K ×K → [0, 1].

Given the choices of the social planner, Ω = {de, du, ηmaxm , ηmaxu , ηmaxe , θmaxu , θmaxe ,
hmaxu , hmaxe }, aggregate consumption is given by total production minus relocation
costs and search costs:

F (Ω|ψ) =
∑
k∈K

{bk ûk}+
∑
k∈K

∑
z∈Z

{(π(y, µk) + z) ĝ(z, k)}

+
∑
k∈K

{
Auk × ûk + Aek ×

∑
z∈Z

ĝ(z, k)

}

−
∑
k∈K

{
ηmaxm (k)

(
τ

N(k)
+ du(k)uk +

∑
z∈Z

[de(z, k)g(z, k)]

)
× cu(k, k∗)

}

− (1− τ)λu
∑
k∈K

{
ηmaxu (k)(1− du(k))p(θmaxu (k))×

× Es[αkk∗hmaxu (s, k) + (1− αkk∗)mmax
u (k)](uk − n̂sk)cu(k, k∗)

}

− (1− τ)λe
∑
k∈K

∑
z∈Z

{
ηmaxe (z, k) [1− de(z, k)] p(θmaxe (z, k))×

× Es[αkk∗hmaxe (s, z, k) + (1− αkk∗)mmax
e (z, k)]g(z, k)ce(k, k

∗)

}
− (1− τ)ξλu

∑
k∈K

{[(1− du(k))θmaxu (k)] (uk − n̂sk)}

− (1− τ)ξλe
∑
k∈K

∑
z∈Z

{[1− de(z, k)] θmaxe (z, k)g(z, k)}, (A1)

where k∗ denotes the destination location for any source location k, and ûk, ĝ(z, k)
denote the distribution of individuals across employment states, locations, and sub-
markets at the production stage and at the beginning of the next period.

A.1 The Social Planner’s Value Function

The social planner maximises the sum of current and future aggregate consumption
discounted at the factor β. Hence, the planner’s value function, W (ψ), solves the
following Bellman equation:

W (ψ) = max
Ω
{F (Ω|ψ) + βEW (ψ̂)} (A2)
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subject to (1), (2), (3), and

de : Z ×K → [δ, 1], du(l) : K → [0, 1], ηmaxm (l) : K → [0, 1],

ηmaxu (l) : K → [0, 1], ηmaxe (z, l) : Z ×K → [0, 1], θmaxu (l) : K → R+,

θmaxe (z, l) : Z ×K → R+, hmaxu (s, l) : Z ×K → [0, 1], hmaxe (s, z, l) : Z ×K ×K → [0, 1]

A.1.1 Separability of the Social Planner’s Problem

The social planner’s value function, W (ψ), depends on the aggregate productivity,
y, the measure of workers who are unemployed across N(k) locations, u, and the
measure of workers who are employed in N(z) submarkets across N(k) locations, g.
Directed search (and the self-selection it implies) enables this decomposition of the
Planner’s problem into worker-specific problems.

Consider the planner’s value function W (ψ), which solves (A2); it is possible to
express W (ψ) as follows:

W (ψ) =
∑
k

{Qmax
u (k, y)× nsk}+

∑
k

{Wu(k, y)× (uk − nsk)}

+
∑
k

∑
z

{We(z, k, y)g(z, k)}, (A3)

where Qmax
u (k, y), Wu(k, y), We(z, k, y) are the component value functions for the

unemployed non-searchers in location k, the unemployed job-seekers in location k,
and the workers employed in matches of productivity z in location k, respectively.

A.1.2 Component Value Functions

Inspection of (A3) suggests that the social planner’s value function, W (ψ), is linear
in u and g. This implies that the social planner’s problem is equivalent to solving
(N(z) + 2) × N(k) smaller problems, each one of which is associated with workers
in a particular submarket, and/or employment state, and/or location. The planner’s
problem is equivalent to the optimisation of the following component value functions
subject to the constraints given in equation (A2).

The component value function for the unemployed is:11

Wu(l, y) = max
du
{du ×Qmax

u (l, y) + (1− du)× Smaxu (l, y)} (A4)

where Smaxu (l, y) is the component value function for the unemployed job-seekers in
location l and Qmax

u (l, y) is the component value function for the unemployed non-
searchers. Smaxu (l, y) solves

Smaxu (l, y) = max {Su(l, 1, y), Su(l, 2, y), . . . , Su(l,K), y)} , (A5)

11To keep the notation manageable, {θu, hu,mu} is used to denote both
{θu(l, k), hu(l, k),mu(l, k)} and {θu(l, l), hu(l, l),mu(l, l)}.
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where Su(l, k, y) is the value of an unemployed job-seeker in l searching for a match
in k ∈ K

Su(l, k, y) = max
ηu,θu,hu

{ −(1− ηu) ξλuθu − ηu ξλuθu

+ [1− ηu]([1− λup(θu)mu][bl + Aul + βEWu(l, ŷ)]

+ λup(θu)Es[αllhu(s) + (1− αll)mu][π(y, µl) + s+ Ael + βEWe(s, l, ŷ)])

+ ηu([1− λup(θu)mu][bl + Aul + βEWu(l, ŷ)]

+ λup(θu)Es[αlkhu(s) + (1− αlk)mu][π(y, µk) + s+ Aek − cu(l, k) + βEWe(s, k, ŷ)])

} (A6)

Similarly, Qmax
u (l, y) solves

Qmax
u (l, y) = max{Qu(l, 1, y), Qu(l, 2, y), . . . , Qu(l,K, y)}, (A7)

where Qu(l, k, y) is the value of an unemployed non-searcher in l who examines the
possibility of relocating to k ∈ K

Qu(l, k, y) = max
ηm
{(1− ηm)(bl + Aul + βEWu(l, ŷ))

+ ηm(bk + Auk − cu(l, k) + βEWu(k, ŷ))} (A8)

The component value function for the employed is:12

We(z, l, y) = max
de
{de ×Qmax

u (l, y) + (1− de)× Smaxe (z, l, y)}, (A9)

where Smaxe (z, l, y) is the component value function for workers employed in matches
of productivity z in location l and Qmax

u (l, y) is the component value function for the
unemployed non-searchers, given by (A7). Smaxe (z, l, y) solves

Smaxe (z, l, y) = max{Se(z, l, 1, y), Se(z, l, 2, y), . . . , Se(z, l,K, y)}, (A10)

where Se(z, l, k, y) is the value of a worker employed in a match of productivity z in
l searching for a match in k ∈ K

Se(z, l, k, y) = max
ηe,θe,he

{

− [1− ηe(z)][1− de]ξλeθe − ηe(z)[1− de]ξλeθe
+ [1− ηe(z)][1− de][1− λep(θe)me][π(y, µl) + z + Ael + βEWe(z, l, ŷ)]

+ [1− ηe(z)][1− de]λep(θe)Es[αllhe(s) + (1− αll)me][π(y, µl) + s+ Ael + βEWe(s, l, ŷ)]

+ ηe(z)[1− de][1− λep(θe)me][π(y, µl) + z + Ael + βEWe(z, l, ŷ)]

+ ηe(z)[1− de]λep(θe)Es[αlkhe(s) + (1− αlk)me][π(y, µk) + s+ Aek − ce(l, k) + βEWe(s, k, ŷ)]

} (A11)

12As in the previous footnote, {θe, he,me} is used to denote both
{θe(z, l, k, y), he(z, l, k, y),me(z, l, k, y)} and {θe(z, l, l, y), he(z, l, l, y),me(z, l, l, y)}.
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A.2 Who Moves, When and Where? The Solution to the
Social Planner’s Problem

The planner’s problem can be decomposed into worker-specific problems that depend
only on the aggregate productivity because the search process is directed. In this
section, we provide a description of the solution. The planner solves the following
(N(z) + 2)×N(k) problems, each one of which corresponds to individuals in a par-
ticular location, employment state, and submarket.

A.2.1 Unemployed Non-Searchers

There are N(k) problems for unemployed non-searchers. The planner solves each
one of these problems in two steps. First, conditional on the non-searchers’ current
location, l, the planner makes pairwise comparisons of non-searchers’ lifetime utility
in l and their corresponding utility in every possible destination location k (accounting
for moving costs), and chooses η∗m(l, k, y), which determines whether an unemployed
non-searcher is better-off staying in her current location or moving to location k. In
particular, the efficient choice of ηm(l, k, y) is η∗m(l, k, y) = 1 if

bl + Aul + βEWu(l, ŷ) ≤ bk + Auk + βEWu(k, ŷ)− cu(l, k) (A12)

and η∗m(l, k, y) = 0 otherwise.
Having made all possible pairwise comparisons between the current location and

destination locations, the planner then chooses ηmaxm (l, y) = η∗m(l, k∗, y) where k∗ ∈ K
is the destination location that maximises the present value of the lifetime utility of
unemployed non-searchers, as given by equation (A7).

A.2.2 Unemployed Job-Seekers

There are N(k) problems for unemployed job-seekers. The planner solves each one
of these problems in three steps. First, conditional on the unemployed job-seekers’
current location, l, the planner chooses d∗u(l, y), which determines whether job-seekers
are better-off stopping their search and becoming non-searchers or continuing their
search for matches. Specifically, the efficient choice of du(l, y) is d∗u(l, y) = 1 if

Qmax
u (l, y) ≥ Smaxu (l, y) (A13)

and d∗u(z, l, y) = δ otherwise (see (A4)).
In the second step the planner makes pairwise comparisons of job seekers’ life-

time utility in l and their corresponding utility in every possible destination location
k (accounting for search and moving costs), and chooses η∗u(l, k, y), θ∗u(l, k, y), and
h∗u(s, l, k, y), which determine whether an unemployed job-seeker is better-off search-
ing for a match in her current location or in location k. In particular, the efficient
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choice of ηu(l, k, y) is η∗u(l, k, y) = 1 if

− ξλuθ∗u(l, l, y) + [1− λup(θ∗u(l, l, y))m∗u][bl + Aul + βEWu(l, ŷ)]

+ λup(θ
∗
u(l, l, y))Es[αllh∗u(s) + (1− αll)m∗u][π(y, µl) + s+ Ael

+ βEWe(s, l, ŷ)] ≤
− ξλuθ∗u(l, k, y) + [1− λup(θ∗u(l, k, y))m∗u][bl + Aul + βEWu(l, ŷ)]

+ λup(θ
∗
u(l, k, y))Es[αlkh∗u(s) + (1− αlk)m∗u][π(y, µk) + s+ Aek − cu(l, k)

+ βEWe(s, k, ŷ)] (A14)

and η∗u(l, k, y) = 0 otherwise (see (A6)).
The efficient choice of θu(l, k, y) solves:

ξ ≥ p′(θ∗u(l, k, y))
∑

s≥r∗u(l,k)

(αlk{π(y, µk) + s+ Aek − bl − Aul − cu(l, k)

+ βE[We(s, k, ŷ)−Wu(l, ŷ)]}+
+ (1− αlk)Ez′{π(y, µk) + z′ + Aek − bl − Aul − cu(l, k)

+ βE[We(z
′, k, ŷ)−Wu(l, ŷ)]})f(s) (A15)

Finally, the efficient choice of hu(s, l, k, y) is h∗u(s, l, k, y) = 1 if

bl + Aul + βEWu(l, ŷ)] + cu(l, k) ≤ αlk[π(y, µk) + s+ Aek + βEWe(s, k, ŷ)]+

+(1− αlk)Ez′ [π(y, µk) + z′ + Aek + βEWe(z
′, k, ŷ)] (A16)

and h∗u(s, l, k, y) = 0 otherwise
Having made all possible pairwise comparisons between the current location and

destination locations, the planner then chooses in step 3 ηmaxu (l, y) = η∗u(l, k
∗, y),

θmaxu (l, y) = θ∗u(l, k
∗, y), and hmaxu (s, l, y) = h∗u(s, l, k

∗, y) where k∗ ∈ K is the destina-
tion location that maximises the present value of the lifetime utility of unemployed
job-seekers (as given by equation (A5)).

A.2.3 Employed Workers

There are N(z)×N(k) problems for employed workers. The planner solves each one
of these problems in three steps. First, conditional on the idiosyncratic productivity
of the workers’ current match, z, and conditional on the workers’ current location,
l, the planner chooses d∗e(z, l, y), which determines whether workers are better-off
separating or remaining employed in this type of match. Specifically, the efficient
choice of de(z, l, y) is d∗e(z, l, y) = 1 if

Qmax
u (l, y) ≥ Smaxe (z, l, y) (A17)

and d∗e(z, l, y) = δ otherwise. (See (A9))
In the second step the planner makes pairwise comparisons of workers’ lifetime

utility in l and their corresponding utility in every possible destination location k
(accounting for search and moving costs), and chooses η∗e(z, l, k, y), θ∗e(z, l, k, y), and
h∗e(s, z, l, k, y), which determine whether a worker employed in a match of productivity
z is better-off searching for a match in her current location, l, or in location k.

7



In particular, the efficient choice of ηe(z, l, k, y) is η∗e(z, l, k, y) = 1 if

− ξλeθ∗e(z, l, l, y) + [1− λep(θ∗e(z, l, l, y))m∗e][π(y, µl) + z + Ael + βEWe(z, l, ŷ)]

+ λep(θ
∗
e(z, l, l, y))Es[αllh∗e(s) + (1− αll)m∗e][π(y, µl) + s+ Ael

+ βEWe(s, l, ŷ)] ≤
− ξλeθ∗e(z, l, k, y) + [1− λep(θ∗e(z, l, k, y))m∗e][π(y, µl) + z + Ael + βEWe(z, l, ŷ)]

+ λep(θ
∗
e(z, l, k, y))Es[αlkh∗e(s) + (1− αlk)m∗e][π(y, µk) + s+ Aek − ce(l, k)

+ βEWe(s, k, ŷ)] (A18)

and η∗e(z, l, k, y) = 0 otherwise (see (A11)).
The efficient choice of θe(z, l, k, y) solves:

ξ ≥ p′(θ∗e(z, l, k, y))×
∑

s≥r∗e (z,l,k,y)

(αlk{π(y, µk)− π(y, µl) + s− z + Aek − Ael − ce(l, k)

+ βE[We(s, k, ŷ)−We(z, l, ŷ)]}
+ (1− αlk)Ez′{π(y, µk)− π(y, µl) + z′ − z + Aek − Ael − ce(l, k)

+ βE[We(z
′, k, ŷ)−We(z, l, ŷ)]})f(s) (A19)

Finally, the efficient choice of he(s, z, l, k, y) is h∗e(s, z, l, k, y) = 1 if

π(y, µl) + z + Ael + βEWe(z, l, ŷ) + ce(l, k) ≤ αlk[π(y, µk) + s+ Aek + βEWe(s, k, ŷ)]

+ (1− αlk)Ez′ [π(y, µk) + z′ + Ak + βEWe(z
′, k, ŷ)] (A20)

and h∗e(s, z, l, k, y) = 0 otherwise.
Having made all possible pairwise comparisons between the current location and

destination locations, the planner then chooses in step 3 ηmaxe (z, l, y) = η∗e(z, l, k
∗, y),

θmaxe (z, l, y) = θ∗e(z, l, k
∗, y), and hmaxe (s, z, l, y) = h∗e(s, z, l, k

∗, y) where k∗ ∈ K is
the destination location that maximises the present value of the lifetime utility of
employed job-seekers (as given by equation (A10)).
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B Computational Details and Validation Studies

B.1 Moments used in the GMM criterion

The GMM objective function, see (13), calculates the distance between data moments
and model generated moments. Table B1 presents the data and model simulated
moments considered in our estimation. Labour market transitions are considered by
segment and local labour market, while regional transitions and unemployment are
aggregated across segments at the local labour market level.13

Table B1: GMM moments

data moments model-based moments
local esec → esec transition rate eesecl see eq. (B1)
local esec → u transition rate eusecl see eq. (B2)
local sectoral employment share gsecl see eq. (B3)
local unemployment unempl see eq. (B4)
relocations into l relocl see eq. (B5)

Notes. Data moments based on LIAB 2002-2008, time-averaged. Subscript l

denotes (destination) travel to work area, superscript sec denotes sector.

To calculate the job-to-job transition rate, we examine flows into matches of pro-
ductivity z in segment sec at TTWA l between the beginning of the period and the
production stage. The job-to-job transition rate is then determined by dividing the
total number of flows into z∀z ∈ Z by total employment in segment sec at TTWA
l at the beginning of the period, see (B1): for each segment, we first compute the
number of workers who, at the beginning of the period, were employed in a match
of productivity z′ in location l and moved into a match of productivity z in TTWA
l, and the number of workers who, at the beginning of the period, were employed in
a match of productivity z′ in location k′ and moved into a match of productivity z
in TTWA l; we then aggregate across productivity levels (∀z ∈ Z) and divide by the
local sectoral employment level at the beginning of the period.

eesecl =
1∑

z∈Z

g(z, l)
×(1− τ)×

∑
z∈Z

{∑
z′∈Z

{
g(z′, l)[1− d∗e(z′, l)]×

× [1− ηmaxe (z′, l)]λep(θ
max
e (z′, l))hmaxe (z, z′, l)f(z)

}
+

+
∑
k′∈K

{∑
z′∈Z

{
g(z′, k′)[1− d∗e(z′, k′)]ηmaxe (z′, k′, l)×

× λep(θmaxe (z′, k′, l))hmaxe (z, z′, k′)f(z)

}} }
(B1)

13To keep the notation manageable, we suppress the sectoral superscript from the right-hand-sides
of equations (B1)-(B6).
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Similarly, to calculate the job-to-unemployment transition rate, we compute all
the job separations in segment sec at TTWA l that occurred between the beginning
of the period and the production stage, and divide by the local sectoral employment
level at the beginning of the period.

eusecl =
1∑

z∈Z

g(z, l)
×

{
τ ×

∑
z∈Z

g(z′, l) + (1− τ)×
∑
z∈Z

{
d∗e(z, l)g(z, l)

}}
(B2)

Local employment in every sector is expressed as a share of the total employment
in this sector across all local labour markets

gsecl =

∑
z∈Z

g(z, l)∑
k∈K

∑
z∈Z

g(z, k)
(B3)

The remaining moments used in our GMM objective function are aggregated
across segments at the TTWA level. We consider local unemployment levels at
TTWA l and relocation flows into l at the production stage of the period. Local
unemployment is given by

unempl =
∑
sec

usecl (B4)

where sec denotes segment, and usecl is given by (2).14

Similarly, relocation flows into l are given by

relocl =
∑
sec

relocsecl (B5)

where relocsecl denotes relocation flows into l for segment sec. To calculate segment
specific relocation flows into l, we first compute the number of regional flows into
matches of productivity z in TTWA l aggregated across origin labour market state
(unemployment or employment in a match of productivity z′), and also aggregated
across origin TTWA (∀k′ ∈ K−l); we then aggregate across productivity levels (∀z ∈
Z), and add regional flows into the unemployment pool of TTWA l, which include

14Note that in the presentation of our model, we only consider one segment, so (2) presents ul as
total unemployment in travel to work area l.
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unemployed non-searchers or new entrants.

relocsecl =(1− τ)×
∑
z∈Z

{∑
k′∈K

{
uk′ [1− du(k′)]ηmaxm (k′)λup(θ

max
u (k′))× hmaxu (z, k′)f(z) +

+
∑
z′∈Z

{
g(z′, k′)[1− d∗e(z′, k′)]ηmaxe (z′, k′, l)×

λep(θ
max
e (z′, k′, l))hmaxe (z, z′, k′)f(z)

} }}
+

+ (1− τ)×

{∑
k′∈K

ηmaxm (k′, l)×

(
du(k

′)× uk′ +
∑
z∈Z

[de(z, k
′)g(z, k′)]

)}
+

+
τ

N(k)
×

{
[1− ηmaxm (l)] +

∑
k′∈K

ηmaxm (k′, l)

}
(B6)

B.2 Statistical inference

Statistical inference for the vector of parameters in this GMM framework is standard,
see e.g. Wooldridge (2002, chapter 14). To be precise, let m̂ denote the N × 1
vector of data moments, and m(Θ) the corresponding vector of theoretical moments,
where all parameters are collected in the P × 1 vector Θ. Under standard regularity
conditions, assuming that the moment vector follows asymptotically a normal law,
m̂ ∼ N(m(Θ0),Σ) where Θ0 denotes the population value, then

Θ̂ ∼ N(Θ0, Ĵ
−1Î Ĵ−1),

with Ĵ = M̂ tΩ̂M̂ , Ω̂ =diag(w1/m̂
2
1, . . . , wN/m̂

2
N), M̂ = ∂m(Θ̂)/∂Θt, and Î = M̂ tΩ̂Σ̂Ω̂M̂ .

The variance estimator of the moment function is Σ̂ = (m̂−m(Θ̂))(m̂−m(Θ̂))t.
In practice, in order to estimate the derivative of each moment with respect to

each parameter, ∂m(Θ)/∂Θ, we follow Lise and Robin (2017), since the moments
are not necessarily smooth functions of the parameters: In particular, we compute a
partial derivative by simulating the model, taking the parameter in question from a
grid centered about the estimated value while keeping all other parameters at their
estimated values, computing the new moment function, fitting a high order polyno-
mial for each moment, and estimating the partial derivatives by the derivatives of
such fitted polynomials evaluated at Θ̂.

B.3 Computational Details: An Evolutionary Algorithm

In the empirical implementation of the model, we segment the economy by worker
characteristics (i.e. age and skill level) and by industry in order to accommodate
better worker and firm heterogeneity. Our estimation algorithm reflects that our ob-
jective function depends on a set of global and a set of segment-specific parameters.
This is achieved by switching successively between estimating segment-specific pa-
rameters given global parameters, and then estimating global parameters given the
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estimates of the segment-specific parameters. Each such inner and outer loop features
a minimisation of the GMM criterion, see (13), which is a function of the distance
between the empirical and simulated model-based moments. We use the moments
presented in Table (B1).

In principle, the minimisation problem could be solved by an application of the
Nelder Mead algorithm. In practice, this is very slow given the high dimensionality
of our set-up, so we develop an evolutionary optimisation algorithm to estimate our
model. The comparative strength of our algorithm is that it is paralleliseable.15 Our
evolutionary optimisation algorithm is as follows:

step (i) generate a “population”, equal to N , of randomly drawn parameter vectors
within the lower and upper parameter bounds;

step (ii) evaluate the objective function N times and sort parameter vectors by the
corresponding “fitness” (i.e. objective function) value;

step (iii) pick the S (where S < N) best fitness parameter vectors and store them,
discard the remaining parameter vectors;

step (iv) generate R (where R < N) randomly drawn parameter vectors as in step
(i); generate M (where M+R ≤ N) new parameter vectors that correspond
to linear combinations of the stored S parameter vectors; generate B (where
B+M +R ≤ N) new parameter vectors, such that B = (1 +p)×S, where
p ∈ [−0.1, 0.1]; use the minimum and maximum values of each parameter
in the stored S parameter vectors as the new lower and upper bounds and
generate N −R−B −M randomly drawn parameter vectors within these
new (contracted) lower and upper bounds;

step (v) using the new population of R+M +B+S = N parameter vectors repeat
steps (ii)-(iv)

step (vi) repeat until I different populations of N parameter vectors have been gen-
erated and evaluated.

B.4 Validation Experiments

We present several validation experiments that, in different settings, enable us to il-
lustrate numerically identification, and the performance of the estimation algorithms.
Throughout, we consider models with 30 locations, which correspond to the 30 largest
TTWAs in our German data. The time period is a quarter.

B.4.1 Experiment I: A Simple Cost Function

In this experiment, we focus on the frictional parameters and the moving cost function
by considering only one sector and segment. Amenities are assumed to play no role.

15In Appendix B.4, we present the results of a simple experiment in the context of which our
algorithm yields results that are equivalent to Nelder Mead.
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The moving cost function is parsimonious, and only physical distance and differences
in house prices play a role. In particular, the moving cost function is given by

c(l, k) = α0 + α1 ×∆hp(l, k) + α2 × distance(l, k) (B7)

where distance(l, k) measures the geographic distance between two locations, and
∆hp(l, k) is the difference between the relative house price indices. The objective is
to estimate λe, δ, ξ as well as α = (α0, α1, α2). The population parameters are set at
λe = 0.85, δ = 0.026, ξ = 3.65, α1 = 5, and α2 = 0.004.

Identification

We begin by studying numerically identification by evaluating the contours of the
estimation objective function given by the GMM criterion, given by equation (15) in
the main text. We do so by varying pairs of parameters, holding the remainder at
their population values. The criterion function evaluated at the population values
equals, of course, zero.

Figure B1 reports the results. It is evident that the contours are well behaved.
The population values give the global minimum (depicted by the red circle in the
centre of the plot), and in view of the observed gradients, estimators should converge
to the population values. We conclude that the examined model is indeed identified.

Estimation

The shape of the contours depicted in Figure B1 suggest that our estimation, which
involves minimising the GMM criterion function (13) with respect to the parameters
considered, should converge eventually. The specification of the simple model permits
estimation by the “slow” Nelder Mead algorithm, which we use here as a benchmark.
We also examine the performance of our genetic algorithm. The left panel of Table
B2 reports the estimates obtained using Nelder Mead (column N-M) and using our
genetic algorithm (column GA). In both cases, the estimates are very close to the
population values. The right panel of Table B2 reports the fit of the model evaluated
in terms of spatially aggregated (transition) measures; given the closeness of the
estimates to the population values, the model fit is perfect. We conclude that our
“fast” genetic algorithm works very well.

B.4.2 Experiment II: Multiple industries, age and skill groups

In this experiment, we consider the setting of the empirical application. We now
introduce amenities, as given by equation (14) in the main text, and consider three
sectors (manufacturing, services, financial services) and four segments within each
sector (two age- and two skill-groups). Recall that the frictional parameters and one
parameter of the cost function, asi in (15), are segment-specific, while the remaining
parameters of the cost and the amenity function are invariant across segments.

Identification

As before, we illustrate numerically identification by considering the contours of the
GMM objective function, varying pairs of parameters holding the remainder at the

13



Figure B1: Contours: Experiment 1
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Table B2: Validation experiment I (simple cost function)

Estimates Model Fit
pop. value N-M GA true N-M GA

λe 0.85 0.8500 0.8499 unemp [%] .04798 .04798 .04798
δ 0.026 0.0260 0.0260 reloc [%] .01447 .01447 .01447
ξ 3.65 3.6507 3.6479 u → e [%] .03899 .03899 .03899
α0 1.0 0.9857 0.9916 e → e [%] .05426 .05426 .05426
α1 0.004 0.0041 0.0041
α2 5.0 5.2995 4.9662

obj. fct 5.376e-07 7.827e-07

Notes: Optimisation using the Nelder-Mead algorithm (N-M) and the genetic algorithm (GA) described in Ap-

pendix B.3.

population values. In the first set of experiments, we focus on one segment and
sector (young skilled workers in manufacturing), and vary sector/segment specific
parameters. This generalises Experiment I by embedding it in the more complicated
multi sector/segment model.

Figure B2 reports the results. As in the preceding Figure B1, it is evident that the
contours are well behaved. The population values give the global minimum, and in
view of the observed gradients, estimators should converge to the population values.
We conclude that the examined model is indeed identified.

In Figure B3, we consider another experiment in which we vary at least one
segment invariant parameter, such as a parameter in the amenities or the moving
cost function. As previously, we conclude that the examined model is identified.

At the same time, this experiment illustrates one particular feature of the model,
which further supports our approach of estimating the model using an inner and an
outer loop, as described in Appendix B.3: our GMM objective function is more sensi-
tive to variation in segment invariant parameters than in segment specific parameters.
This is evident in Figure B3, where we present how variation in a segment-specific
and in a segment invariant parameter affects the GMM objective function: if we vary
sufficiently one sector invariant parameter, e.g. one of the parameters of the amenities
function as in the left panel of Figure B3, then this can induce big population real-
locations across local labour markets, and the resulting change in the model-implied
moments can lead to jumps in the GMM objective function. Figure B3 illustrates
this clearly: in both panels, we observe a critical ridge at which the GMM criterion
increases by a jump. By contrast, the contours in the neighbourhood of the pop-
ulation values are well behaved. This behaviour of the objective function implies
that any attempt to estimate all the parameters (segment-specific and segment in-
variant) of the model simultaneously would be very time-consuming, and justifies our
approach of switching successively between estimating segment-specific parameters
given global parameters, and then estimating global parameters given the estimates
of the segment-specific parameters.
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Figure B2: Contours for Experiment 2, variation of within-segment parameters
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Figure B3: Contours for Experiment 2, variation of across-segment parameters
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Estimation

The model with multiple sectors, age and skill groups is used to examine the perfor-
mance of our estimation algorithm: we attempt to recover the population values of
all global and segment-specific parameters of the model by minimising the GMM cri-
terion function (13). In this experiment, we estimate eight global (segment-invariant)
parameters (five parameters of the cost function and three parameters of the ameni-
ties function), as well as fourty-eight segment-specific parameters: we consider twelve
segments (three sectors and four segments per sector) each one of which has four
segment-specific parameters. These parameters are estimated using the genetic al-
gorithm described in Appendix B.3. Figure B4 reports the performance of our algo-
rithm: the top panel presents the average value of the GMM criterion function (13) in
each iteration, while the bottom panel presents the best/minimum value of the GMM
criterion per iteration. It is evident that our algorithm achieves convergence fairly
fast, despite the large number of parameters estimated. More importantly, the be-
haviour of the average and the “best” fitness value in iterations 1-6 suggests that our
algorithm can flexibly explore the parameter space and focus on the most promising
regions without completely eliminating seemingly irrelevant regions.
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Figure B4: Convergence plot
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C Productivity Estimation

We follow the Olley and Pakes (1996) procedure to obtain estimates of total fac-
tor productivity (TFP) using sector-specific plant-level production functions. We
consider three sectors: Low-Tech Manufacturing, Low Services, and High-Tech Man-
ufacturing. As is standard in the literature, we assume a Cobb-Douglas production
function with labour, capital, and materials as inputs. A control for the share of
high skilled workers is also included in the production function. Table C1 reports the
coefficients.

Table C1: Production function coefficients from OP estimation

Low Manufacturing Low Services High Manufacturing
labour 0.3312 0.2793 0.3774
capital 0.0692 0.0441 0.0471

high skill share 0.0137 0.0358 0.0785
materials 0.5903 0.7151 0.5924

Notes: Based on LIAB for years 2002-08.

The estimates reported in Table C1 are similar to the coefficients estimated by
Ehrl (2016) using LIAB data for a period similar to the period we consider (2000-
2007).
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D Data Appendix

D.1 8 selected local labour markets

Figure D1: Eight selected travel-to-work areas.

1

2

3
4

5
6
7

8

Notes: 8 Local labour markets (TTWAs): 1: Hamburg, 2: Wolfsburg, 3: Lev-

erkusen, 4: Bochum, 5: Frankfurt, 6: Mannheim, 7: Stuttgart, 8: München.

In order to illustrate further and in more specific detail the spatial heterogeneity
of local labour markets, and the observed patterns of geographic mobility, we report
summary statistics for 8 selected local labour markets. These include the largest and
economically most important cities (Hamburg, Frankfurt, Munich) and a selection
of smaller ones (such as Bochum or Wolfsburg). These 8 local labour markets are
depicted on the map of Figure D1.

Table D1 reports some summary statistics. It is evident that these local labour
markets differ markedly in terms of unemployment rates, wages, living costs, as well as
productivities. For instance, the mean unemployment rate in the TTWA of Bochum
is 2.4 times higher than that of Munich, while the mean daily wage in the former is
91% of the latter. The largest mean daily wage is paid in the TTWA of Frankfurt,
which also exhibits the largest mean worker fixed effect and the largest firm fixed
effect in services, the latter being expected given the area’s central role in banking
and finance. Wolfsburg is a comparatively small TTWA and, as the seat of car
manufacturer Volkswagen, being the principal employer, exhibits the largest firm
fixed effect in manufacturing; since its workforce is mainly employed in blue collar
occupations, it is no contradiction that the mean daily wage and the mean worker
fixed effect are fairly low, as are housing costs. Stuttgart, by comparison, is much
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larger and much more diversified industrially, which is manifested in a smaller mean
firm fixed effect in manufacturing but a larger worker fixed effect. Overall, the TTWA
of Munich is the most expensive to inhabit.

Table D2 describes the geographic mobility among these 8 selected local labour
markets (and all others aggregated in the cells labelled ‘Rest’). The table reveals
that, conditional on being located in a big urban zone (such as Hamburg, Frankfurt,
or Munich), the worker is more likely to relocate to another such urban zone than to
a smaller urban zone. For instance, originating in the TTWA of Munich, moves to
Wolfsburg, Bochum or Mannheim are extremely unlikely. However, spatial moves are
not exhausted by the 8 selected TTWA, as the residual category exceeds by at least
one order of magnitude all other conditional probabilities.
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Table D2: Spatial mobility across TTWAs

1 [H] 2 [Wo] 3 [Lev] 4 [Bo] 5 [Fr] 6 [Man] 7 [Stut] 8 [Mun] Rest
1 [H] 0.037 0.286 0.106 0.550 0.057 0.203 0.475 10.363
2 [Wo] 0.052 0.018 0.016 0.024 0.001 0.011 0.011 1.194
3 [Lev] 0.243 0.019 0.143 0.240 0.050 0.104 0.174 5.603
4 [Bo] 0.098 0.004 0.132 0.082 0.014 0.048 0.073 3.780
5 [Fr] 0.415 0.018 0.250 0.114 0.169 0.224 0.342 6.401
6 [Man] 0.048 0.006 0.042 0.016 0.200 0.097 0.057 2.603
7 [St] 0.220 0.010 0.101 0.050 0.190 0.092 0.196 5.715
8 [Mun] 0.466 0.013 0.229 0.090 0.437 0.070 0.267 6.455
Rest 12.252 1.070 7.481 3.714 8.419 2.918 6.422 7.911

Notes: Bi-stochastic transition matrix for moves between selected TTWAs. The category labelled “Rest” aggregates all

other TTWA. Based on LIAB, time period 2002-2008. Reported is sl,k = number of relocations from l to k divided by the

total number of relocations in Germany. By definition
∑

l

∑
k sl,k = 100.
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