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Summary We consider the class of heavy-tailed income distributions and show that the
shape of the income distribution has a strong effect on inference for inequality measures.
In particular, we demonstrate how the severity of the inference problem responds to the exact
nature of the right tail of the income distribution. It is shown that the density of the studentized
inequality measure is heavily skewed to the left, and that the excessive coverage failures
of the usual confidence intervals are associated with excessively low estimates of both the
point measure and the variance. For further diagnostics, the coefficients of bias, skewness and
kurtosis are derived and examined for both studentized and standardized inequality measures.
These coefficients are also used to correct the size of confidence intervals. Exploiting the
uncovered systematic relationship between the inequality estimate and its estimated variance,
variance stabilizing transforms are proposed and shown to improve inference significantly.

Keywords: Asymptotic expansions, Inequality measures, Inference, Statistical performance,
Variance stabilization.

1. INTRODUCTION

While first-order asymptotics for estimators of measures of inequality, such as Generalized
Entropy (GE) indices, are well known, it is now also well known that this theory is a poor guide
to actual behaviour in samples of even moderate size when the population (income) distribution
exhibits a right tail that decays sufficiently slowly. Such distributions not only include the class
of heavy-tailed distributions, whose tail decays like a power function, but also, for instance,
the lognormal distribution, whose tail decays exponentially fast, provided the shape parameter
is sufficiently large. For instance, Schluter and van Garderen (2009) have shown that the actual
(finite sample) densities of the estimators are substantially skewed and far from normal. Standard
one-sided and equi-tailed two-sided confidence intervals are too short, exhibiting coverage errors
significantly larger than their nominal rates thus rendering inference unreliable. Davidson and
Flachaire (2007) have shown that these problems persist for standard bootstrap inference.

Following the contributions of Schluter and Trede (2002), several authors have focused
on the tail behaviour of the population income distribution. If the distribution is heavy-tailed,
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samples are likely to contain ‘extremes’ or ‘outliers’, i.e. income realizations from the tail of the
distribution which are substantially larger than income realizations associated with the main body
of the distribution. An intuition, discussed in e.g. Cowell and Flachaire (2007) and Davidson and
Flachaire (2007, p. 142), is to surmise that these extremes are the root cause of the inference
problem since most inequality measures are not robust to such extremes (Cowell and Victoria-
Feser, 1997). Alternatively, it might be that the sample drawn from a heavy-tailed distribution
does not contain enough extreme drawings. We show that the coverage failures of standard
confidence intervals are associated with estimates of the inequality measure and estimates of
its variance which are both too low compared to their population values. This also holds for
income distributions whose right tail decays faster than a power function, such as the lognormal
provided its shape parameter is sufficiently large.

A principal contribution of the paper is the diagnosis of the underlying problem for inference,
and we carefully show how the severity of the inference problem responds to the exact nature
of the right tail of the income distribution. Denoting Î and v̂ar(Î ) the standard estimators of
the inequality measure and its variance, the problem is made visible via simulations in plots of
realizations of v̂ar(Î ) against Î and identifying those (Î , v̂ar(Î )) pairs which are associated with
a coverage failure of standard two-sided confidence intervals. Since the actual density of the
studentized measure is shown to have a substantial left tail, this implies that the usual right
confident limit is too often too small. Almost all coverage failures are on this side (despite
the fact that the standard confidence intervals are two-sided and symmetric), and these wrong
confidence limits, it turns out, are associated with particularly low realizations of both Î and
v̂ar(Î ). Exploiting the systematic relation between Î and v̂ar(Î ), we propose variance stabilizing
transforms. This constitutes the second principal contribution of the paper. We show that these
succeed, in conjunction with a bootstrap, in reducing the inference problems significantly.

In order to understand better the separate and joint contributions of Î and v̂ar(Î ) to
the inference problem we also develop asymptotic expansions for both studentized (using
the estimated variance) and standardized (using the theoretical variance) inequality measures.
Building on the second-order expansions of Schluter and van Garderen (2009), we now derive
third-order expansions. In particular, we derive the bias, skewness and kurtosis coefficients.
These coefficients are used as diagnostic tools and also to correct the sizes of one-sided
confidence intervals. Used as diagnostics, the cumulant coefficients enable us to quantify the
departure from normality of the finite sample distributions, and to quantify the distortions caused
by the variance estimate v̂ar(Î ) by comparing the studentized and the standardized inequality
measures. In our settings, the cumulant coefficients for the former are found to be substantially
larger in magnitude than for the latter. Hence, while the density of the standardized inequality
measure is close to normal and skewness is only modest, the studentized density exhibits
significant skewness and a ‘fat’ left tail. This good performance of the standardized inequality
measure contrasts starkly with the poor performance of the studentized measure. This confirms
that the poor performance arises from the need to estimate the variance of the inequality measure,
and it is the correlation of this variance estimator with the inequality estimator that plays an
important role. Exploiting this relationship, we show that our variance stabilizing transform
exhibits cumulant coefficients that are smaller in magnitude than those of the studentized
inequality measure.

The plan of paper is as follows. The classes of inequality measures and income distributions
considered in this paper are defined in Section 2. Section 3 presents the simulation evidence
which shows that it is particularly low realizations of both Î and v̂ar(Î ) which are associated with
excessive coverage errors of the usual two-sided confidence intervals. We propose asymptotic
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expansions for the cumulants of both standardized and studentized inequality measures as
diagnostic tools to better understand the inference problem. These are considered abstractly
and numerically in Section 4. In order to maintain readability, the precise statements and the
derivation of the cumulant coefficients are collected in the Web Appendix to this paper, which
also contains the remaining proofs. In Section 4.1, the cumulant coefficients are examined
quantitatively. In Section 4.2, we use them to correct the size of one-sided confidence intervals.
The availability of the cumulant coefficients also enables us to examine the performance of
alternative distributional approximations. In particular, in Section 4.3 we consider saddlepoint
approximations. The specific uncovered relationship between Î and the estimated variance
v̂ar(Î ) suggests the application of variance stabilizing transforms. This is done in Section 5,
and we present performance evidence that shows that these succeed in considerably lessening
the inference problem.

2. GENERALIZED ENTROPY INDICES OF INEQUALITY

We consider the popular and leading class of inequality indices, the GE indices. These are
of particular interest because it is the only class of inequality measures that simultaneously
satisfies the key properties of anonymity and scale independence, the principles of transfer and
decomposability, and the population principle. For an extensive discussion of the properties of
the GE index see Cowell (2000). The class of indices is defined for any real α by

I (α; F ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

α2 − α

[
μα(F )

μ1(F )α
− 1

]
for α �= {0, 1}

−
∫

log

(
x

μ1(F )

)
dF(x) for α = 0∫

x

μ1(F )
log

(
x

μ1(F )

)
dF(x) for α = 1

, (2.1)

where α is a sensitivity parameter, F is the income distribution and μα(F) = ∫
xαdF(x) is the

moment functional, and we will assume incomes to be positive. The index is continuous in α.
The larger the parameter α, the larger is the sensitivity of the inequality index to the uppertail of
the income distribution. It is not monotonic in α, however. Although the index is defined for any
real value of α, in practice only values between 0 and 2 are used and we confine our examination
to this range. The limiting cases 0 and 1 are treated implicitly below since all key quantities are
continuous in α.

GE indices constitute a large class which nests some popular inequality measures as special
cases. If α = 2 the index is also known as the (Hirschman-)Herfindahl index and equals half
the coefficient of variation squared. Herfindahl’s index plays an important role as a measure
of concentration in industrial organization and merger decisions. In empirical work on income
distributions this value of α is considered large. Two other popular inequality measures are the
so-called Theil indices, which are the limiting cases α = 0 and α = 1. Finally, the Atkinson index
is ordinally equivalent to the GE index.

We follow the literature cited above and assume that incomes X are independent and
identically distributed according to income distribution F, and that we have samples of size n at
our disposal. I is usually estimated by Î = I (F̂ ) where F̂ is the empirical distribution function,
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hence the estimator replaces the population moments in (2.1) by the sample moments. We denote
the sample analogue of μα(F) by mα = μα(F̂ ). For a sample of size n define the studentized
index

Sn = √
n

(
Î − I

σ̂

)
, (2.2)

where σ̂ is an estimate of the asymptotic standard deviation of
√

n(Î − I ), derived by the delta
method and given by σ = [(α2 − α)μα+1

1 ]−1B0
1/2 with B0 = α2μ2

αμ2 − 2αμ1μαμα+1 + μ2
1μ2α −

(1 − α)2μ2
1μ

2
α for α �∈{0, 1}. B̂0 and thus σ̂ is obtained by replacing population moments with

sample moments. In order to examine the role played by the estimated variance σ̂ 2 we also
consider the standardized inequality measure

S̃n = √
n

(
Î − I

σ

)
. (2.3)

We will distinguish standardized quantities from their studentized counterparts throughout
by tildes. Simplifying a little we have thus Sn = √

nB̂
−1/2
0 [mαm1 − μ−α

1 μαmα+1
1 ] and S̃n =√

nB
−1/2
0 [μα+1

1 mαm−α
1 − μ1μα].

By standard central limit arguments, Sn has a distribution that converges asymptotically to
the standard Normal distribution (see e.g. Cowell, 1989), and by the arguments of Section 4 later

Pr (Sn ≤ x) = �(x) + O(n−1/2)

where � denotes the Gaussian distribution.

2.1. Heavy-tailed income distributions

We follow the previous literature cited above and consider the leading parametric income
distributions which are regularly used to fit real-world income data. Specifically, we consider first
the heavy-tailed Singh-Maddala distribution SM(a, b, c) with density f (x; a, b, c) = abcxb−1/(1 +
axb)c+1. Schluter and Trede (2002) have shown that the right tail of SM is of the form L0(x)x−bc

where L0(x) is a slowly varying function. Hence the tail decays like a power function so the
distribution is heavy-tailed, and the right tail index equals bc. Since this right tail is close
to Paretian, it is of interest to consider also directly the heavy-tailed Pareto distribution with
parameter and tail index equal to λ. In empirical settings, the Pareto distribution is often used to
fit wealth distributions. Finally, we consider the lognormal LN(m, sd) distribution. Although the
tail of LN decays exponentially fast, we will show that for large sd the inequality measure suffers
the same problems as in the heavy-tailed cases.

GE indices are scale invariant, and thus independent of the parameters m and a for the
LN and SM distributions, respectively. For notational convenience, we suppress these irrelevant
parameters later. Since I is scale invariant, so is σ and thus Sn. The population values are in
the lognormal case I(α; sd) = (α2 − α)−1 × [exp (0.5(α2 − α)(sd)2) − 1], in the Singh-Maddala
case, defined only for bc > α, I(α; b, c) = (α2 − α)−1c−(α−1)B(1 + α/b, c − α/b)/[B(1 + 1/b, c −
1/b)α − 1] where B( ·, ·) denotes the Beta function, and in the Pareto case I(α; λ) = (α2 − α)−1

[(λ − 1)α(λ − α)−1λ−λ+1 − 1]. The asymptotic variance σ 2 of the inequality measure is always
finite in the LN case, but in the SM and the Pareto case we require that bc and λ exceed max
{2, 1 + α, 2α}. Note that, for given α, I increases as the tail of the income distribution becomes
heavier (as sd increases in the LM case, or λ decreases in the Pareto case, or b decreases for fixed
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c in the SM case). We therefore depict many results below as functions of I, in order to facilitate
comparisons across income distributions, and to show how the severity of the inference problem
responds to the exact nature of the right tail of the income distribution.

3. SIMULATION EVIDENCE: THE ROLE OF Î , V̂AR(Î ), AND THE TAIL
BEHAVIOUR OF F

In order to fix ideas and illustrate the main insights about the inferential problem, we consider
the Theil indices and I(2), and samples of size n = 500. We parameterize the lognormal case
with sd ∈ {0.3, 0.7} and the SM case with b = 2.8 and c = 1.7.1,2 Extensive results of
several experiments (varying sample size n, α, and the extent of tail heaviness) are reported
in Section 5.2 later. The simulation exercises of this section, based on 10,000 repetitions, are
meant to be illustrative, and not exhaustive. Complementary simulation evidence is provided in
Section 5 later, and in Davidson and Flachaire (2007) and Schluter and van Garderen (2009). Our
qualitative conclusions also hold for these other settings.3

The first set of experiments simply consists in estimating, using standard kernel density
estimators, the actual densities of the studentized inequality measure S500 and of the standardized
inequality measure S̃500, focusing on the skewness of the densities. The juxtaposition of S500 and
S̃500 is a first illustration of the distributional impact of having to estimate σ 2.

Figure 1 depicts the results (α = 2 (solid line), α = 1.05 (broken line), α = 0.05 (dotted line))
The kernel density estimates for S500 in the SM and the Pareto case clearly reveal the substantial
skewness the density of the studentized measure suffers when incomes are generated by a heavy-
tailed distribution. The problem increases as the sensitivity parameter α of the inequality measure
increases. The problem is not, however, exclusively associated with tails which decay like power
function. While the density estimates for S500 in the lognormal case look fairly standard Normal
when the shape parameter is 0.3, increasing the shape parameter to 0.7 induces again substantial
skewness. As a shorthand, we will refer to these two cases as income distributions which exhibit
‘sufficiently slow tail decay’.

By contrast, the density estimates for the standardized inequality measure S̃500 do appear
very symmetric. However, the densities also exhibit a greater concentration around 0 than the
standard Normal density when the tails of the income distribution decay sufficiently slowly and
the sensitivity parameter α equals 2. For the lower values of α the densities appear close to the
standard Normal.

These estimated densities have several important implications for inference when incomes are
drawn from distributions with sufficiently slow tail decay. The non-Gaussian shape of the density
of S500 suggests that standard inference is likely to be unreliable. The substantial left tail of the
densities indicates that there are too many realizations Î which are too small. In conjunction with
the steep increase of the densities at the depicted right tail, coverage errors of standard symmetric
two-sided confidence intervals are likely to be one-sided. A comparison of the densities of S500

and S̃500 suggests that the distributional problem arises from the need to estimate σ 2. It is not the
non-linearity of the inequality measure I which induces the non-Gaussian shape of the density of
S500, but the systematic relation between Î and v̂ar(Î ) on which we focus on next.

1To be precise, we set the sensitivity parameter α of the inequality index equal to 0.05 and 1.05, respectively.
2SM(., 2.8, 1.7) and LN(., 0.3) are good fitting parameterizations of the income distribution in Germany.
3Results for different parameterizations, sample sizes and different αs are available on request.
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Figure 1. Density estimates for S500 and S̃500.
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Inequality measures and heavy-tailed distributions 131

Figure 2. Coverage errors in Î versus n × v̂ar(Î ) plots.

We turn to the induced inferential problems by considering the actual coverage errors of
standard 95% two-sided symmetric confidence intervals for α = 2. Extensive results of several
experiments (varying sample size n, α and the extent of tail heaviness) are reported in Section 5.2
later. Compared to a nominal coverage error rate of 5%, the actual total coverage error rate in
the lognormal case LN(., 0.7) is 14.3%, but almost all rejections (13.8 percentage points) are
rejections on the right (i.e. the population value I exceeds the right confidence limit). In the SM
case the total rate is 15.5%, and 15.2 percentage points are rejections on the right. In the Pareto
case, the total and right rejection rates are 21.1%. This is the flip-side of the substantial left tail
and the heavy skewness of the density of S500. The importance of the distortion caused by v̂ar(Î )
can also be assessed in terms of the actual coverage errors for S̃500 compared to those for S500.
For the particular LN, SM and Pareto distributions we have actual total coverage errors of 3.37%,
1.97% and 1.47%, respectively. Hence the impact of the distortion is substantial, as these are far
closer to the nominal rate. These lower than nominal coverage error rates are consistent with the
observed greater concentration, relative the Gaussian density, of the densities of S̃500 for α = 2
depicted in Figure 1.

Next, the interplay between Î , v̂ar(Î ), and the coverage errors is examined by simply plotting
in Figure 2 (The vertical line corresponds to the population value of I, pairs labelled R correspond
to coverage errors on the right of standard 95% two-sided symmetric confidence intervals) the
(Î , v̂ar(Î )) pairs, and by identifying those pairs which are associated with a coverage error.
Given that almost all coverage errors are right rejections, we restrict the depicted range of Î ,
and re-label those (Î , n × v̂ar(Î )) pairs associated with such a coverage error to the right by R.
The population value of I is indicated by the vertical line, the population value of n × var(Î )
exceeds the depicted range. It is evident that the wrong confidence limits are associated with
particularly low realizations of both Î and v̂ar(Î ). The intuition underlying these results is that
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as tail heaviness increases, the population moments increase and eventually cease to exist for
heavy-tailed distributions, whilst the (finite) sample moments tend to underestimate these. In
their investigation Davidson and Flachaire (2007) conclude that the persistent inference problem
is due to the poor tail estimation of the underlying income distribution.

The juxtaposition of the densities of studentized and standardized inequality measure
suggests that the problem is the non-linearity of Sn, and in particular the systematic relationship
between Î and v̂ar(Î ). This relationship is exploited in Section 5, where variance stabilizing
transforms are proposed and performance evidence for these is examined. Before turning to
these, however, we proceed to examine the issues of bias, skewness and kurtosis formally using
asymptotic expansions.

4. ASYMPTOTIC EXPANSIONS

Asymptotic expansions of the cumulants of Sn provide measures for the departures of the
distribution of Sn from the Gaussian limit. These will be used later as diagnostic tools for the
anatomy of the above inference problems, to correct the size of confidence intervals, and to
assess possible remedies.

Expanding the first four cumulants of Sn in powers of n−1/2 yields

K1 = n−1/2k1,2 + O(n−3/2)

K2 = 1 + n−1k2,2 + O(n−2)

K3 = n−1/2k3,1 + O(n−3/2)

K4 = n−1k4,1 + O(n−2). (4.1)

Since Sn is studentized, the coefficient k1,2 is the bias coefficient, k3,1 is the coefficient of
skewness, and k4,1 is the kurtosis coefficient.4,5 In terms of the cumulant generating function
of Sn, given by exp(KSn

(s)) = E{exp(sSn)}), the cumulant coefficients define the second- and
third-order term in the approximation to KSn

, i.e. we have

KSn
(s) = 1

2
s2 + n−1/2

(
sk1,2 + 1

6
s3k3,1

)
+ n−1

(
1

2
s2k2,2 + 1

24
s4k4,1

)
+ O(n−3/2).

(4.2)

In the exact Gaussian case, all these coefficients are zero.
It is an important contribution of this paper to derive explicitly these cumulant coefficients

for both studentized and standardized inequality measures. In order to maintain readability of the
exposition, these cumulant coefficients are stated explicitly in Web Appendix for this paper, since
the resulting expressions are lengthy and involve expectations of products of certain mean-zero
random variables.

4The cumulant of order r exists if the all moments of Sn up to order r exist.
5Expanding cumulant i, which is of order n−(i−2)/2, as a power series in n−1 yields Ki = n−(i−2)/2(ki,1 + n−1ki,2 + ···)

with k1,1 = 0 and k2,1 = 1 because of centering and the studentization. Hence ki,j refers to the coefficient of n−(j−1) in
this power series in the expansion for the i’s cumulant.
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These coefficients are also the key quantities in the Edgeworth expansion of the CDF of Sn

given by

Pr{Sn ≤ x} = �(x) + n−1/2p1(x)φ(x) + n−1p2(x)φ(x) + O(n−3/2) (4.3)

with

p1 (x) = −
(

k1,2 + 1

6
k3,1(x2 − 1)

)
p2 (x) = −x

(
1

2

(
k2,2 + k2

1,2

) + 1

24
(k4,1 + 4k1,2k3,1)(x2 − 3) + 1

72
k2

3,1(x4 − 10x2 + 15)

)
.

The right-hand side of equation (4.3) is to be interpreted as an asymptotic expansion since it does
not necessarily converge as an infinite series. See e.g. Hall (1992) for an extensive discussion of
Edgeworth expansions, and in his Section 2.4 a statement of the regularity conditions for the
validity of the expansion; chapter 3 in Hall (1992) justifies the bootstrap given the Edgeworth
expansions.6 The GE index is a smooth function of the moments with continuous third derivatives
and μ1 > 0 since we assume incomes be positive. This implies that Hall’s Theorem 2.2 applies
and we require that (a) X has a proper density function (implying that Cramér’s condition is
satisfied), and with α∗ = max {2, α + 1, 2α} that (b) μ3α∗ < ∞ for the first-order expansion
which includes the O(n−1/2) term and μ4α∗ < ∞ for the second-order expansion which includes
the O(n−1) term. If μ4α∗ < ∞ then the regularity condition of footnote 4 with r = 4 is satisfied.
These moment conditions are satisfied in the case of the lognormal distribution, in case of the
SM and the Pareto distribution bc and λ must exceed (j + 2)α∗ for the Edgeworth expansion of
order j. For the standardized inequality measure S̃n, α

∗ appearing in the regularity conditions is
replaced by max {1, α}.

4.1. Diagnostics

We proceed to use the cumulant coefficients to examine how increased tail-heaviness of the
income distribution induces more severe departures from normality.

Consider first α = 2, the studentized measured Sn, and the lognormal case as the shape
parameter sd of the income distribution, and thus I(2), increases. Table 1 reports the results,
and Figure 3 (α = 2 (solid line), α = 1.05 (broken line) and α = 0.05 (dotted line)) depicts
the cumulant coefficients as functions of I. It is evident that the magnitudes of the cumulant
coefficients not only increase sharply, but also that these become large relative to their n−1/2 and
n−1 coefficients (for instance, for n = 500, n1/2 = 22.3 and k3,1 = −62 for α = 2 and sd = 0.6;
note too that σ is substantially larger than I). These problems are less pronounced, but still not
negligible, for the smaller values of α.

In the case of the heavy-tailed SM and Pareto distributions, the explosions of the cumulant
coefficients are even more pronounced, as depicted in Figure 4 (Values same as Figure 3) as
functions of I.7 The tails of these income distributions become more heavy as the tail indices (bc
and λ) decrease; fixing c, I decreases in b and also in λ. Recall that for the Edgeworth expansion
of order j for the distribution of Sn to exist that μ(j+2)α∗ be finite. Hence, for sufficiently heavy
tails, the cumulants will cease to exist.

6Biewen (2002) has explicitly justified the bootstrap for inequality measures.
7The figure for k4,1 is less insightful because the coefficient exhibits non-monotonicity, and is therefore not depicted.
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Figure 5. Cumulant coefficients |k3,1| (solid line) and k̃3,1 (dashed line) as functions of I(2).

4.1.1. The Distortions caused by σ̂ . The distortions caused by σ̂ can also be quantified in
terms of the associated cumulant coefficients. Table 1 focuses on the LN case, and reports
the cumulant coefficients for Sn and S̃n. It is evident that the first three cumulant coefficients
have substantially smaller magnitudes in the latter case (consistent with Figure 1, the skewness
coefficient k̃3,1 has now the opposite sign). In Figure 5 we focus on the case I(2) and compare the
magnitudes of the skewness coefficients k3,1 and k̃3,1, while the tails of the income distribution
become heavier. We conclude that the resulting distortions are substantial across all income
distributions.

4.2. Size corrections

Given the availability of the cumulant coefficients, it is now possible to correct the size of
standard one-sided confidence intervals.8 Let wβ denote the β-level quantile of Sn and zβ the
β-level Gaussian quantile given by �(zβ) = β. Then inverting the Edgeworth expansion (4.3)
yields the Cornish-Fisher expansion of wβ in terms of zβ ,

wβ = zβ − n−1/2p1(zβ) + n−1

[
p1

(
zβ

)
p′

1(zβ) − 1

2
zβp1(zβ)2 − p2(zβ)

]
+ Op(n−3/2).

(4.4)

Hence, since Pr{Sn ≤ wβ} equals β to the stated order, using wβ instead of zβ yields a size
correction of the usual one-sided confidence intervals.

Figure 6 (α = 2 (solid line), α = 1.05 (broken line) and α = 0.05 (dotted line). The
horizontal line pertains to the Gaussian quantile z0.05 = −1.65) depicts the size correcting
quantiles wβ based on the second term correction for size β = 0.05, n = 500, and the
three inequality measures. Given the substantial skewness of the densities of Sn seen in
Figure 1, it is clear that these wβ will be substantially larger in magnitude than the Gaussian
quantile zβ . Figure 6 quantifies the extent of this and reveals the increase as the tails of
the income distributions decay more slowly. Finally we note that convergence in n of wβ

8Rothenberg (1988) has considered this in a regression context. I am grateful to a referee for suggesting this.
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Figure 7. Coverage error rates of nominal size 0.05 one-sided confidence interval.

to zβ is fairly slow. For instance, in the LN case with sd = 0.5, wβ has values −2.9, −2.5
and −2.3 for sample size 250, 500 and 1000, respectively.

4.2.1. Performance Evidence. Performance evidence for the size correction as a function
of I (and thus of tail heaviness) is reported in Figure 7, (solid line refers to the size
corrected CI based on w0.05 given by equation (4.4), the dotted line refers to the standard
CI based on the Gaussian quantile z0.05 = −1.65, based on samples of size n = 500, and
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R = 10,000 repetitions), for I(2) (row 1), I(1.05) (row 2) and I(0.05) (row 3). The standard
confidence intervals based on the Gaussian quantile perform poorly across all settings. The
size correction does very well for α equal to 0.05 and 1.05. For α = 2 it does also well for
moderate values of the distributional parameter, but when the income distribution tail becomes
sufficiently heavy, the Cornish Fisher approximation starts to over-correct the size. However,
for inference, this over-correction is far less problematic than the excessively short Gaussian
confidence interval.

4.3. Saddlepoint approximations

Edgeworth expansions are well known to suffer some shortcomings which limit their usefulness
in some practical applications: The density expansion is not guaranteed to be positive, and
oscillations can sometimes be observed in the tails. It turns out that these observations also apply
in our inequality measurement setting when the income distribution exhibits sufficiently heavy
tails. The problems in the tails are disturbing for inference, since it is precisely the tail areas that
are typically of interest for inference. By contrast, the expansion is usually good around the mean,
in which case it is easily seen that the accuracy of the pdf expansion improves to O(n−1). This
suggests to Escher-tilt the Edgeworth expansion of the density, which leads to the saddlepoint
approximation (Daniels, 1954, see e.g. Reid, 1988, for a survey). The new approximation is
guaranteed to be positive and exhibits improved tail behaviour since the approximation error
turns out now to be relative rather than absolute.

Recall the cumulant generating function KS of Sn, let K(t) = nKS(tn−1), and denote its first
and second derivatives by K′ and K′′. The saddlepoint approximation to the density of Sn at x is

g (x) = c(2πK ′′(s))−1/2 exp(K(s) − sx), (4.5)

where the saddlepoint s satisfies the saddlepoint equation K′(s) = x. The saddlepoint
approximation is rescaled to integrate to 1 which determines the constant c. The approximation
to the distribution function of S is

G (x) = �

(
w + 1

w
log

( v

w

))
, (4.6)

with w = sign(s)[2(sx − K(s))]1/2 and v = s[K′′(s)]1/2. If we denote the pdf of Sn by pdf , then
pdf (x)/g(x) = 1 + O(n−1), so the approximation error is relative rather than absolute (the case of
Edgeworth expansions).

The cumulant generating function of Sn is not known in practice. We therefore approximate
KS(s), following Easton and Ronchetti (1986), to order n−3/2 by using the approximation (4.2).
This leads to an approximation to the saddlepoint approximation which is of the same order. The
approximate solution to the saddlepoint equation K′(s) = x is guaranteed to be unique since the
approximation to K′ is a cubic in s.

4.3.1. Performance Evidence. Performance evidence for the saddlepoint approximations in
the lognormal case is reported in Table 2, as both the sensitivity parameter α of the inequality
index and the shape parameter sd and thus tail heaviness increases. All approximations are
evaluated at the quantiles determined by the ‘exact’ (i.e. simulated) CDF of S500.

The tail accuracy of the normal approximation is poor, and decreases as α increases for fixed
sd and as sd increases for fixed α. By contrast, the saddlepoint approximation does well for the
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moderate values of sd considered. For instance, in the case of α = 2 and sd = 0.7 when the exact
CDF evaluates to 0.025, the normal approximation is 0.008 while the saddlepoint approximation
is 0.03, and turning to the 97.5% quantile, the normal approximation evaluates to 0.95 while the
saddlepoint approximation is 0.97. However, the performance of all approximations deteriorate
as the tail of the income distribution becomes heavier.

Similar qualitative and quantitative conclusions follow for the SM distribution and the Pareto
distribution. For instance, the LN(, 0.3) and the SM(., 4.2, 4) distributions yield similar values
for I and σ 2, as well as for bias and skewness coefficients. Table 3 reports the results for this
case. (Details for the Pareto distribution are not reported for the sake of brevity). To summarize,
the saddlepoint approximation performs well for moderate parameter values but its performance
deteriorates markedly when the speed of tail decay of the income distribution becomes slower.
Rather than to seek improved approximations to the actual distribution of the measure, the
next section shows that it is preferable to work directly with suitably transformed inequality
measures.

5. VARIANCE STABILIZING TRANSFORMS

An alternative approach to improving inference is to consider non-linear transformations of
the inequality measure, which are designed to address directly the root cause of the inference
problem. Specifically, our results of the previous sections suggest that an important role is played
by the estimated variance of the inequality measure and the systematic relationship between Î

and v̂ar(Î ). This suggests the application of a variance stabilizing transform.9

Figure 2 suggests that for the considered income distributions, the relation could be
approximately exponential, so that log(v̂ar(Î )) is approximately linear in Î . This conjecture is
confirmed in Figure 10, Column 1, which plots log(v̂ar(Î )) vs. Î for several income distributions,
and further depicts a non-parametric estimate based on smooth splines, which is approximately
linear. This approximate linearity can be shown explicitly for the heavy-tailed Pareto distribution
P(λ) and α = 2 as follows. We have I ≡ I (2) = 1

2
1

λ(λ−2) with variance σ 2 = 2
λ3

(λ−1)4

(λ−2)3(λ2−7λ+12) .
Inverting I, then substituting out λ in σ 2 and taking logs yields

v (I ) = ln

⎛⎝ (2I + 1)2

2I 2

[
7

8I 3
+ 1

16I 4
− 5

8I 3

√
1

2I
+ 1

]−1
⎞⎠ . (5.1)

Then v(I) is approximately linear in the relevant range as depicted in Figure 8 (The solid curve
depicts v(I), the straight dashed line connects the two endpoints).

The variance stabilizing transform is of the form

h (I ) =
∫ I

0

du

[σ 2(u)]1/2
, (5.2)

where σ 2(I) denotes the variance as a function of I. By the delta method var(h(I)) =
1 asymptotically. By the above reasoning, log(v̂ar(Î )) = γ1 + γ2Î + error , so the specific

9An alternative normalizing transformation is considered in Schluter and van Garderen (2009), which is designed
to annihilate asymptotically the skewness coefficient of the transform. This transform, however, does not exploit the
systematic relation between Î and v̂ar(Î ).
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Figure 8. v(I) versus I(2) for the Pareto distribution.

transform is

t (I ) = −
(

2

γ2
e−γ1/2

)
exp

(
−γ2

2
I
)

. (5.3)

We proceed to examine the properties of this transform in terms of its cumulant coefficients
before proceeding to examine its actual performance.

5.1. Asymptotic expansions for transforms

We present some general results before specializing them to the specific transform (5.3). Consider
any non-linear transform t(.) with t′(I) �= 0, denote the studentized transform by

Tn = n1/2 t (I ) − t (I0)

σ̂ t ′ (I )
,

and denote the cumulant coefficients of Tn by λi,j.10

10The term c in Corollary 5.1, which depends on α and certain moments but is scale-invariant, is induced by the
estimation error of σ̂ of order n−1/2, and is defined explicitly in the proof of this corollary.
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Figure 9. Cumulant coefficients of Tn and Sn in the LN case.

PROPOSITION 5.1. To Op(n−3/2), we have

Tn = Sn − 1

2
n−1/2σ̂

t ′′ (I0)

t ′ (I0)
S2

n + n−1σ̂ 2

[
1

2

t ′′ (I0)2

t ′ (I0)2 − 1

3

t ′′′ (I0)

t ′ (I0)

]
S3

n.

COROLLARY 5.1. The cumulant coefficients for Tn are

λ1,2 = k1,2 − 1

2
σ

t ′′ (I0)

t ′ (I0)

λ2,2 = k2,2 − σ (k3,1 + 3k1,2)
t ′′ (I0)

t ′ (I0)
+ σ 2

(
15

4

[
t ′′ (I0)

t ′ (I0)

]2

− 2
t ′′′ (I0)

t ′ (I0)

)
− t ′′ (I0)

t ′ (I0)

3

2
c

λ3,1 = k3,1 − 3σ
t ′′ (I0)

t ′ (I0)

λ4,1 = k4,1 − 2σ
t ′′ (I0)

t ′ (I0)
k5,1 − 12σ

t ′′ (I0)

t ′ (I0)
k3,1 + 24σ 2 t ′′ (I0)2

t ′ (I0)2 − 8σ 2 t ′′′ (I0)

t ′ (I0)
− 21

t ′′ (I0)

t ′ (I0)
c.

The cumulant coefficients for the specific transform (5.3) follow immediately from Corollary
5.1 with t′′(I)/t′(I) = −γ 2/2 and t′′′(I)/t′(I) = (γ 2/2)2. We have the following result:

LEMMA 5.1. If the coefficients of the odd cumulants of Sn are negative, the even ones are
positive and γ 2 > 0, then the transform (5.3) reduces both bias, skewness and kurtosis for
sufficiently small γ 2.

The lemma is illustrated in Figure 9 (the solid curve depicts λi,j, the dashed line depicts ki,j)
for the LN case (qualitative similar results obtain for the other two distributions and are therefore
not depicted). It is evident that the transformation has reduced the three cumulant coefficients
significantly in magnitude.

C© 2012 The Author(s). The Econometrics Journal C© 2012 Royal Economic Society.



144 C. Schluter

Figure 10. Aspects of variance stabilization for I(2).

5.2. Performance evidence

Figure 10 depicts the results of applying transform (5.3), in which the coefficients (γ 1, γ 2) were
estimated by a simple regression of log(v̂ar(Î )) on Î using the simulated data.11 In practice, the
estimates can be obtained by a preliminary bootstrap. Column 2 of the Figure plots v̂ar(t(Î ))
on t(Î ), and also plots a non-parametric estimate based on smooth splines. It is evident that the
transform does indeed stabilize the variance since the estimated curve is approximately equal to 1
except for a small number of observations in the sparse right tail.12 Column 3 of the Figure
shows simple kernel density estimates of the densities of the studentized S500 (solid line) and
T500 (dashed line). The density of the transform is more symmetric and the skewness problem
has been much reduced. Hence we expect performance improvements for inference when the
transform is followed by an application of the bootstrap. Qualitatively similar pictures obtain for
different values of α and different income distribution parameters.

Tables 4 to 6 consider detailed bootstrap evidence for the performance of the studentized
variance stabilizing transform, and benchmark this against the normal (first order) approximation
and the performance of the studentized bootstrap, as the tail of the income distribution becomes
progressively more heavy. The experiments are conducted for samples of sizes 250, 500 and
1000, across LN, SM and Pareto distributions (we also include the case λ = 2.5 and α = 2 when

11The estimates of (γ 1, γ 2) in the LN(., .7) case are ( − 11.7, 15.9), in the SM(., 2.8, 1.7) case ( − 13.6, 34.1), and in
the P(4.5) case ( − 13.9, 98.8).

12In the SM case, the non-parametric curve falls below 1 around −0.75, and about 1% of the simulated data lie to the
right of this point; in the depicted LN case, the respective numbers are −0.9 and 0.7%.
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Figure 11. Coverage errors of nominal 95% two-sided confidence intervals as functions of I.
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σ 2 does not exist). Each table considers one value of α . The focus is on the coverage error
rates for two-sided confidence intervals with nominal error rate 5%, based on drawing B = 999
bootstrap samples of size n and repeating the experiment R = 100, 000 times. The tables break
down the total coverage error rates (T), into rejections on the left (L) of the confidence interval,
i.e. when the population value lies to the left of the lower confidence limit, and into rejections on
the right (R). Figure 11 (Row 1: α = 2, row 2: α = 1.05, row 3: α = 0.05, based on Tables 4 to 6
for n = 500, normal approximation (dotted line), studentized bootstrap (dashed line), studentized
bootstrap of the variance stabilizing transform (solid line)) summarizes this evidence across the
αs for n = 500, and depicts the total coverage errors as functions of I.

The poor quality of the normal approximation has been discussed extensively above.
Consistent with Davidson and Flachaire (2007), the studentized bootstrap improves on this but
for α = 2 the discrepancy between nominal and actual coverage behaviour is still substantial
even for samples of size 1000. For instance, in the SM case with α the actual error rate is still
twice the nominal rate. The variance stabilizing transform improves performance further across
all income distributions and αs.

6. CONCLUSIONS

We have considered the inference problem for inequality measures when incomes are generated
by distributions with sufficiently slowly decaying tails, and have demonstrated how the severity
of the inference problem responds to the exact nature of the right tail of the income distribution. In
particular, it has been shown that the coverage failures of the usual two-sided confidence intervals
are associated with particularly low realizations of both Î and v̂ar(Î ). To understand better the
separate and joint contributions of both estimators, we have derived and examined quantitatively
the bias, skewness and kurtosis coefficients for both the standardized and studentized inequality
measures. Exploiting the uncovered systematic relationship between Î and v̂ar(Î ), we have
proposed variance stabilizing transforms. Such transforms are shown to lead to improved
inference, and could be used as inputs in more sophisticated bootstrap methods. The diagnosis of
the inference problem and the suggested avenues for remedies complement the methods surveyed
in Davidson (2011), and is further discussed in Schluter (2011).
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