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a b s t r a c t

Finite sample distributions of studentized inequality measures differ substantially from their asymptotic
normal distribution in terms of location and skewness. We study these aspects formally by deriving
the second-order expansion of the first and third cumulant of the studentized inequality measure.
We state distribution-free expressions for the bias and skewness coefficients. In the second part we
improve over first-order theory by deriving Edgeworth expansions and normalizing transforms. These
normalizing transforms are designed to eliminate the second-order term in the distributional expansion
of the studentized transform and converge to the Gaussian limit at rate O(n−1). This leads to improved
confidence intervals and applying a subsequent bootstrap leads to a further improvement to order
O(n−3/2). We illustrate our procedure with an application to regional inequality measurement in Côte
d’Ivoire.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Most attention in the statistical literature on inequality mea-
sures has focused on the asymptotic properties of their estima-
tors (see e.g. Cowell (1989), Thistle (1990), and Davidson and
Duclos (1997)). Their finite sample properties have rarely been
considered. Exceptions are, for instance, Mills and Zandvakili
(1997), Biewen (2001) and Davidson and Flachaire (2007) who in-
vestigate bootstrap inference, andMaasoumi and Theil (1979)who
develop small-sigma approximations. We consider finite sample
properties of Generalized Entropy (GE) indices of inequality, which
constitute a leading class of inequality indices since it is the only
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class that simultaneously satisfies the key properties of anonymity
and scale independence, and the principles of transfer, decom-
posability, and population (see e.g. Maasoumi (1997) or Cowell
(2000)). Studies on industrial concentration, or income studies af-
ter decomposition into population subgroups, or cross country or
regional comparisons, can easily yield samples of the sizes consid-
ered here.
We show that even for relatively large samples standard

first-order theory provides poor guidance for actual behavior.
The distribution of the studentized inequality measure differs
substantially from the Gaussian limit in terms of location and
skewness. We study the bias (average deviation from zero) and
skewness formally in the first part of this paper by deriving
the second-order expansions of the first three cumulants. We
refer to the resulting coefficients of n−1/2 as bias and skewness
coefficients. This is the first key contribution of this paper.
Moreover, the bias and skewness coefficients can be estimated
non-parametrically using sample moments without affecting the
order of the approximation. In all applications considered below,
it is shown that the bias and skewness coefficient times n−1/2 are
substantial compared to the limit values of zero.
The poor Gaussian approximation has important inferential

consequences. The actual coverage error rate of standard confi-
dence intervals differ substantially from their nominal rates. In
particular, two-sided symmetric confidence intervals are far too
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short, leading in some cases to failure rates several times their
nominal values. Moreover, actual coverage failures are very asym-
metric so that one-sided confidence intervals perform even worse.
Having analysed these departures from normality of the finite

sample distribution of the studentized inequality index, we turn
to potential corrections in the second part of the paper. These
corrections are based on considering the second-order term in
the distributional expansion, which is a function of the bias and
skewness coefficient derived in the first part of the paper. We
consider two approaches. Edgeworth expansions directly adjust
the asymptotic approximation by including the O

(
n−1/2

)
term,

whereas normalizing transformations of the inequality measure
are nonlinear transformations designed to annihilate this term
asymptotically. Edgeworth expansions can suffer from negativity
of the density and oscillations in the tails and we show that this is
indeed a problem for standardized inequality measures.
The focus of the second part of the paper is therefore on

normalizing transforms. Our second key contribution is the
derivation of normalizing transforms for GE inequality measures.
First, we show that the skewness coefficient of a standardized
nonlinear transform of the inequality measure is zero if the
transform satisfies a crucial differential equation. We further
derive the bias coefficient of this transform, so that we obtain
a bias-corrected transform which yields the desired asymptotic
refinement. Second, we use this general result to compute
the normalizing transform for various income distributions and
sensitivity parameters of the inequality index, and study their
finite sample distributions.We show that these are indeed closer to
theGaussian limit distribution. The associated confidence intervals
are much improved in terms of coverage rates and symmetry. A
further improvement is obtained asymptotically and in practice by
a subsequent application of the bootstrap to the transform. The
asymptotic rate of convergence is the same as in Beran’s (1987)
double bootstrap.
We illustrate the implementation of our procedures in the con-

text of measuring regional income and expenditure inequalities.
The motivation for such a study would be the targeting of pol-
icy interventions based on inequality differences. Using household
data for Côte d’Ivoire, we show that improved confidence intervals
based on our methods can be substantially wider and shifted rela-
tive to standard first-order methods used in the literature.
The organization of this paper is as follows. Section 2 states

the class of inequality measures, considers estimation, and states
the first-order (Normal) approximation. The quality of this Normal
approximation in finite samples is studied via simulations in
Section 2.3. We consider quantiles of the actual density of the
studentized inequality index, and we illustrate the consequences
of the departure fromnormality for inference. In Section 3we study
the problems of bias and skewness formally by deriving the bias
and skewness coefficients. These enable us to give the Edgeworth
expansion for the GE indices and to derive the normalizing
transform.We study the behavior of the transform in Section 4 and
Section 5 includes an application of our procedure to the problem
of regional inequality in Côte d’Ivoire. Section 6 concludes and the
proofs are collected in the Appendix.

2. Generalized Entropy indices of inequality

We consider the popular and leading class of inequality indices,
the GE indices. These are of particular interest because it is the only
class of inequality measures that simultaneously satisfies the key
properties of anonymity and scale independence, the principles of
transfer and decomposability, and the population principle. For an
extensive discussion of the properties of the GE index see Cowell
(1977, 1980, 2000).
The class of indices is defined for any real α by

I(α; F) =



1
α2 − α

[
µα(F)
µ1(F)α

− 1
]

for α 6= {0, 1}

−

∫
log

(
x

µ1(F)

)
dF(x) for α = 0∫

x
µ1(F)

log
(

x
µ1(F)

)
dF(x) for α = 1

(1)

whereα is a sensitivity parameter, F is the incomedistribution, and
µα(F) =

∫
xαdF(x) is the moment functional, and we will assume

incomes to be positive. The index is continuous in α. The larger the
parameter α, the larger is the sensitivity of the inequality index to
the upper tail of the income distribution. It is not monotonic in α,
however.
GE indices constitute a large class which nests some popular

inequality measures popular as special cases. If α = 2
the index is known as the (Hirschman–)Herfindahl index and
equals half the coefficient of variation squared. Herfindahl’s
index plays an important role as measure of concentration in
industrial organization andmerger decisions (see e.g. Hart (1971)).
In empirical work on income distributions this value of α is
considered large. Two other popular inequality measures are the
so-called Theil indices, which are the limiting cases α = 0 and
α = 1 (Theil, 1967). Finally, the Atkinson (1970) index is ordinally
equivalent to the GE index.
Although the index is defined for any real value of α, in

practice only values between 0 and 2 are used and we confine our
examination to this range. The limiting cases 0 and 1 are treated
implicitly below since all key quantities are continuous in α.

2.1. GE indices and income distributions

Our investigation centers around three parametric income dis-
tributions which are regularly used to fit real real-world income
data: the Gamma, the Lognormal, and the Singh–Maddala distribu-
tion.We use the common shorthand notation G (r, λ), LN(µ, v1/2),
and SM (a, b, c) to refer to them. Generalized Entropy indices are
scale invariant, and thus independent of the scale parameters λ,
µ, and a for the G, LN , and SM distributions respectively. For nota-
tional convenience, we suppress the irrelevant scale parameters.
McDonald (1984) has shown that these three distributions are

special cases of the Generalized Beta distribution of the second
kind (GB2), whose density is given by

f (x; a, b, c, d) =
bxbd−1

abdB (c, d)
[
1+ (x/a)b

]d+c ,
where B (·, ·) denotes the Beta function. In particular, SM has
density f (x; a, b, c, 1), G has density limc→∞ f

(
x; cλ−1, 1, c, r

)
,

and LN is a special case involving c → ∞ and b → 0. All three
distributions are skewed to the right, but differ in other ways, such
as their tail behavior. Schluter and Trede (2002), for instance, show
that the right tail of the generalized beta distribution canbewritten
as 1 − F(x; a, b, c, d) = g1x−bc

(
1+ g2x−b + O

(
x−2b

))
for some

constants g1 and g2 and x large. It follows that SM has a heavy right
tail which decays like a power function (with right tail index equal
to bc), whereas G and LN decay exponentially fast. The left tail of
GB2 can be written as F (x, a, b, c, d) = g3xbd

(
1+ g4xb + O

(
x2b
))

for some constants g3 and g4 and x small. The moments of the
distributions are stated in McDonald (1984).
The population inequality index specializes for the different

income distributions to:

Gamma: I(α; r) =
(
α2 − α

)−1 [
r−αΓ (α + r)/Γ (r)− 1

]
,

Lognormal: I(α; v) =
(
α2 − α

)−1 [
exp

(
1
2
v(α − 1)α

)
− 1

]
,

Singh–Maddala: I(α; b, c) =
(
α2 − α

)−1
×
c−(α−1)B(1+α/b,c−α/b)
B(1+1/b,c−1/b)α−1 , bc > α.
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Table 1
Actual coverage failure rates in % Notes: L and R refer to coverage errors on the left and right, T is the total coverage error. Nominal error rates are 2.5 % for L and R and 5%
for T; based on 106 replications.

n = 50 n = 100 n = 250 n = 500
L R T L R T L R T L R T

G(.,3) 12.1 0.6 12.6 9.2 0.7 9.9 6.6 0.9 7.5 5.2 1.2 6.4
LN(.,0.7) 29.9 0.7 30.6 24.1 0.4 24.5 17.9 0.3 18.2 14.2 0.3 14.5
SM(.,2.9,1.9) 21.0 0.4 21.3 17.6 0.3 17.8 14.0 0.3 14.3 11.9 0.3 12.2
We focus on these three income distributions not only because
they are quite different, but more importantly because they are
regularly used to fit actual real-world income data. For instance,
Brachmann et al. (1996) estimate the distributional parameters on
German income data for the 1980s and early 1990s. For G they
report point estimates r ∈ [3.4, 4], for LN v ∈ [0.28, 0.31], and
for SM b ∈ [2.7, 2.9] and c ∈ [1.6, 2.1]. Singh and Maddala
(1976) report point estimates of b ∈ [1.9, 2.1], c ∈ [2.5, 3] for US
income data from the 1960s. For US income data from the 1970s
McDonald (1984) reports r = 2.3, v ∈ [0.48, 0.51], b ∈ [2.9, 3.76]
and c ∈ [1.8, 2.9]. For the Lognormal Kloek and van Dijk (1978)
find v ∈ [0.21, 0.54] for different groups of income earners using
1973 Dutch data. Across these studies, we have r ∈ [2.3, 4],
v ∈ [0.28, 0.54], b ∈ [1.9, 3.76], and c ∈ [1.6, 3]. Throughout
this paper, we use parameter values in these ranges. For further
recent examples see Bandourian et al. (2003) who fit these income
distribution models for a large number of countries, including the
USA, Canada, Taiwan and most European countries for the period
1969–1997.

2.2. Estimation and normal approximations

In empirical work the inequality measure I needs to be es-
timated from a sample of incomes denoted Xi, i = 1, . . . , n.
We follow standard practice and assume that incomes are inde-
pendently and identically distributed with distribution F and are
positive. The measure I is a functional, which maps income distri-
butions into scalars. The commonly used estimator simply uses the
Empirical Distribution Function (EDF) F̂(x) = n−1

∑
i 1(−∞,x] (Xi),

where 1(−∞,x] (.) denotes the indicator function on the open inter-
val smaller than or equal to x,

Î = I (̂F).

Since I is a function of moments, the EDF-estimator is also referred
to in the literature as the method of moments estimator. It
is standard practice to obtain the asymptotic variance σ 2 =
aVar(n1/2(̂I − I)) by the delta method, yielding for α 6= {0, 1}

σ 2 =
1(

α2 − α
)2 1

µ2α+21

[
µ21µ2α + α

2µ2αµ2 − 2αµαµ1µα+1

− (1− α)2 µ2αµ
2
1

]
,

and to estimate it by an EDF-based estimator, denoted σ̂ 2.
Inference about the population value I is then based on the

studentized measure, defined as

S = n1/2
(
Î − I
σ̂

)
. (2)

By standard central limit arguments, S has a distribution that
converges asymptotically to the Gaussian distribution (see, inter
alia, Cowell (1989), or Thistle (1990)). Denoting the Gaussian
distribution and density byΦ and φ respectively, then using order
notation, we have

Pr (S ≤ x) = Φ (x)+ O
(
n−1/2

)
. (3)
Standard, first-order, inference methods only use the first term
Φ (x) in this approximation.
Setting x = Φ−1 (p), yields the standard one-sided confidence

interval for I with bound Î − σ̂n−1/2Φ−1 (p), and the usual
symmetric confidence interval Î − σ̂n−1/2 × Φ−1 ([1+ p] /2) ≤
I ≤ Î− σ̂n−1/2Φ−1 ([1− p] /2). Note that the asymptotic coverage
rate for the two-sided confidence interval, based on a standard
symmetry argument, equals p+O

(
n−1

)
. For one-sided confidence

intervals we have p+ O
(
n−1/2

)
.

2.3. Quality of the normal approximation

We proceed to investigate howwell the Normal approximation
performs in realistic settings for samples of varying sizes and
various income distributions. First we consider coverage failure
rates for confidence intervals for I based on the Gaussian quantiles
±1.96, i.e. we consider one-sided confidence intervals with a
nominal error rate of 2.5%, and two-sided confidence intervalswith
nominal error rate of 5%. Table 1 shows the results for I (2). L refers
to the proportion of S smaller than −1.96, R to the proportion
larger than 1.96, and T to the total and therefore the two-sided
confidence interval.
Four striking facts emerge from the table. First, actual coverage

failures for L and T can be a multiple of their nominal sizes
and for R can be close to 0. Second, there is a huge asymmetry
in the left and right rejection rates. Third, rejection rates vary
substantially over income distributions. Finally, even for a sample
size of 500, coverage rates can still be a multiple of the nominal
sizes. Table 1 shows that standard first-order methods based
on the Gaussian approximation are very unreliable. Particularly
bad is the overstated precision of the one-sided (L) and two-
sided (T) confidence intervals.
Changing parameter values of the income distribution does

change the absolute and relative performance. Keeping α = 2 and
n = 100, we found in simulations not reported in this paper for
reasons of space that the performance improves in the Lognormal
case as ν decreases (although for ν1/2 = 0.5 coverage failure
is still 15.7% for the two-sided confidence intervals), worsens in
the Singh–Maddala case as b and c decrease, (e.g. when they are
decreased to b = 2.8 and c = 1.7, coverage failure worsens to
22.6%), and does not change very much in the Gamma case as r
varies over the range 2.3 to 4, with coverage rates from 10.3% to
9.3% respectively. Finally, changing the significance level does not
qualitatively change the results. See Schluter and van Garderen
(2003) for further results and also Biewen (2001).
The coverage failure will change with the value of α. Fig. 1

shows the total coverage failure of two-sided confidence intervals
as a function of α. Failure rates generally improve as α decreases,
but still exhibit substantial excess over nominal rates.
Given the poor performance and asymmetry in the coverage

errors of standard confidence intervals, we investigate the
distribution of S through its quantiles. Table 2 reports the results
for α = 2, whereas Fig. 2 considers α varying.
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Fig. 1. Actual coverage error rates of two-sided symmetric Gaussian confidence intervals for I(α) for nominal rate of 5%, for varying and different sample sizes. Notes:
Income distributions as for Table 1. The solid line refers to samples of size 100, the dashed line to sizes 250, and the dotted line to sizes 500. All simulations are based on 106

replications.
Fig. 2. Quantiles of the studentized inequality measure I(α) for varying α and samples of different sizes. Notes: As for Fig. 1.
Table 2
Quantiles of studentized I (2). Notes: As for Table 1.

p Φ (p) n = 100 n = 250 n = 500
G LN SM G LN SM G LN SM

0.025 −1.96 −2.97 −5.26 −4.03 −2.60 −4.34 −3.53 −2.40 −3.81 −3.29
0.05 −1.64 −2.45 −4.34 −3.36 −2.15 −3.56 −2.95 −1.98 −3.12 −2.74
0.1 −1.28 −1.88 −3.36 −2.62 −1.66 −2.72 −2.31 −1.53 −2.37 −2.12
0.25 −0.67 −1.01 −1.90 −1.50 −0.87 −1.49 −1.29 −0.80 −1.27 −1.18
0.5 0.00 −0.19 −0.59 −0.44 −0.11 −0.37 −0.33 −0.07 −0.26 −0.26
0.75 0.67 0.51 0.36 0.40 0.57 0.45 0.44 0.59 0.50 0.48
0.9 1.28 1.05 0.95 0.94 1.11 0.97 0.95 1.14 0.99 0.97
0.95 1.64 1.34 1.21 1.19 1.40 1.21 1.20 1.45 1.23 1.22
0.975 1.96 1.59 1.44 1.40 1.66 1.42 1.40 1.71 1.44 1.43
We observe the following. First, the discrepancy between
actual and Gaussian quantiles varies substantially across the
distributions. It is the smallest for the Gamma case, and the
worst for the Lognormal case. Second, the performance worsens
as α increases across all income distributions. Third, across the
five depicted quantiles, the lower quantiles exhibit the largest
deviation from the corresponding Gaussian quantiles. All empirical
quantiles lie below the corresponding Gaussian quantiles. This
suggests that the actual distribution is biased, skewed to the
left, and that the skewness increases in α. Fourth, the deviations
decrease naturally as sample size increases, but the improvements
are slow. Hence skewness is persistent even in fairly large samples.

3. Cumulants, edgeworth expansions, and normalizing trans-
forms

The simulation study in the previous section has shown that the
Normal approximation suffers from substantial bias and skewness
problems. In this section we study bias and skewness formally
by considering expansions to second order of the first and third
cumulant (assuming they exist) of the studentized inequality
measures S. These expansions are given by

KS,1 = n−1/2k1,2 + O
(
n−3/2

)
, (4)

KS,3 = n−1/2k3,1 + O
(
n−3/2

)
.

The expansion of the second cumulant is KS,2 = 1 + O(n−1).2
The terms k1,2, and k3,1 and other quantities like σ , depend on α
and the income distribution which we leave implicit for notational
simplicity throughout. A key contribution of our paper is the
derivation of the bias and skewness coefficients k1,2 and k3,1 for
the examined inequality indices. These coefficients are the critical
factors in the second-order terms in the expansion of the cumulant
generating function of S,

κ (y) =
1
2
y2 + n−1/2

[
y k1,2 +

1
6
y3k3,1

]
+ O

(
n−1

)
, (5)

2 By construction k1,1 = 0 and k2,1 = 1. Due to the studentization of S,
KS,3/K

3/2
S,2 = n−1/2k3,1 + O

(
n−1

)
, and k3,1 is therefore also the coefficient of

skewness.
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and the Edgeworth expansion

Pr(S ≤ x) = Φ(x)− n−1/2
(
k1,2 +

1
6
k3,1(x2 − 1)

)
φ(x)

+O(n−1). (6)
The implied second-order expansion of the density follows
immediately as

pdf (x) =
(
1+ n−1/2x

[
1
6
k3,1

(
x2 − 3

)
+ k1,2

])
φ(x)+ O(n−1). (7)

See e.g. Hall (1992) for an extensive discussion of Edgeworth
expansions, who observes, for instance, that the right-hand side
of Eq. (6) does not necessarily converge as an infinite series.
Regularity conditions for the validity of the expansion are also
stated inHall (1992, Section 2.4). The GE index is a smooth function
of the moments with continuous third derivatives and µ1 > 0
sincewe assume incomes to be positive. This implies that Theorem
2.2 in Hall (1992) applies and hence we require that the income
distribution for X satisfies the moment conditions E

(
X3
)
< ∞

and E
(
X3α

)
< ∞ and that X has a proper density function

(implying that Cramér’s condition is satisfied). Note that these
moment conditions restrict the admissible parameter values for
the Singh–Maddala distribution (bc > max(3, 3α)).
Normal approximations only consider the first-order term, i.e.

1
2y
2 in Eq. (5) orΦ(x) in Eq. (6), so the higher-order term indicates

deviation from Normality. Edgeworth expansions directly adjust
the asymptotic approximation by including the O

(
n−1/2

)
term.

However, Edgeworth expansions can suffer from negativity of the
density and oscillations in the tails and we show below that this is
indeed a problem for standardized inequality measures.

3.1. Normalizing transforms

Rather than directly adjusting the asymptotic approximation
for S by including the O

(
n−1/2

)
term in the approximating

density, normalizing transformations of the inequality measure
are designed to annihilate this term asymptotically. The resulting
distribution of the studentized transformed and bias-corrected
inequalitymeasure then satisfiesΦ(x)+O(n−1), so that, compared
to (3) or (6), the order of the approximation has improved.
In our derivations of the required refinement we essentially

follow an approach proposed in Niki and Konishi (1986). See
also Marsh (2004) for a multivariate extension and Gonçalves
and Meddahi (2008) who apply the idea to transforming realized
volatility. However, there are four important differences. First,
we standardize using the empirical quantities, whereas Niki and
Konishi use theoretical versions. Second, we deal explicitly with
the open issue highlighted by Niki and Konishi (1986, p.377) that
the cumulants depend on the true quantity I being estimated.
Third, we deal with the complication that income distributions
and the inequality measure I often depend on more than one
parameter, as in the case of the Singh–Maddala distribution. This
implies that I is not an invertible mapping of the parameters and
as a consequence a whole family of solutions exist. One can choose
anymember of this family andwe showbelowwhat difference this
choice makes.
Let t denote a transformation of the inequality measure I with

continuous first and second derivatives t ′ and t ′′, satisfying t ′(̂I) 6=
0. The standardized transform defined by

T = n1/2
t (̂I)− t(I)

σ̂ t ′(̂I)
, (8)

will also be asymptotically Normal, but its cumulants will have
changed and depend on the nonlinear transformation t . We want
to relate the cumulants of T to the cumulants of S and determine
T such that the third cumulant vanishes. In order to do so, we first
state the basic relation between S and T in the following lemma.
Lemma 1.

T = S −
1
2
t ′′(I)
t ′(I)

n−1/2σ S2 + Op
(
n−1

)
. (9)

Assuming that the distribution of T also admits a valid
Edgeworth expansion, it will be of the form

Pr(T ≤ x) = Φ(x)− n−1/2
(
λ1,2 +

1
6
λ3,1(x2 − 1)

)
φ(x)

+O(n−1), (10)

where λ1,2 and λ3,1 are the coefficients for n−1/2 of the first and
third cumulant of T respectively. The cumulants of T are naturally
related to the cumulants of S since t is a smooth function of I . The
next lemma states this relationship.

Lemma 2.

λ1,2 = k1,2 −
1
2
σ
t ′′(I)
t ′(I)

, (11)

λ3,1 = −
3σ t ′′(I)− k3,1t ′(I)

t ′(I)
. (12)

Our results differ from those stated in Niki and Konishi (1986)
because our definition of the standardized transform (8) has σ̂ t ′(̂I)
in the denominator instead of σ t ′(I) used by Niki and Konishi. The
consequence of this is that in expression (9) the second term on
the right has a coefficient of −1. Finally, the differences between
λ1,2 and λ3,1 of Lemma 2, and the results of Niki and Konishi are
the negative signs of the second right-hand terms. This again is a
result of σ t ′(I) being estimated.
The normalizing transform we seek is a function t that reduces

the skewness of T to zero up to second order. It follows from
Eq. (12) that the skewness term λ3,1 is reduced to zero if the
transform t satisfies the differential equation

3σ t ′′(I)− k3,1t ′(I) = 0, (13)

or, assuming t ′(I) 6= 0,

t ′′(I)
t ′(I)
=
1
3
k3,1
σ
.

The formal solution to the differential equation is

t(I) =
∫
exp

(∫
1
3
k3,1
σ
dI
)
dI.

The asymptotic refinement we seek is found by solving the
differential equation (13), and making a subsequent direct bias
correction based on (11). Note that the differential equation is
invariant to affine transformations and the constants of integration
are immaterial.

Proposition 3. If the transform t satisfies the differential equation
(13), then

Pr
(
T − n−1/2λ1,2 ≤ x

)
= Φ(x)+ O(n−1). (14)

The bias correction can be applied using the
√
n-consistent

estimator λ̂1,2 based on the EDF, giving rise to the following result.

Corollary 4. Pr
(
T − n−1/2λ̂1,2 ≤ x

)
= Φ(x)+ O(n−1).

The implication of this corollary is that with the estimated bias
correction we obtain second-order correct one-sided confidence
intervals.
Another consequence of this proposition is that a further order

of magnitude in the accuracy can be gained by bootstrapping the
transformed statistic as in the following corollary:
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Corollary 5. Let z∗1−p denote the quantile of the bootstrap distribution

of the bias-corrected studentized transform Tbc = n1/2 t (̂I)−t(I)
σ̂ t ′ (̂I)

−

n−1/2λ̂1,2, and let Îp = t−1
(
t
(̂
I
)
− n−1/2σ̂

(
z∗1−p + n

−1/2λ̂1,2
)
t ′(̂

I
))
denote the p upper confidence limit. Then

Pr
{
I ≤ Îp

}
= 1− Pr

{
Tbc ≤ z∗1−p

}
= p+ O

(
n−3/2

)
.

The one-sided bootstrap confidence interval thus achieves the
same asymptotic rate as Beran’s (1987) pre-pivoted, or double
bootstrap.

4. Expansion and transforms for studentized inequality mea-
sures

Central to the theory in the previous section is knowledge of
the bias and skewness coefficients k1,2 and k3,1 for the studentized
inequality measures. We will now state the first key result of the
paper, namely:

Proposition 6. Assuming the expectations E
(
X3
)
and E

(
X3α

)
exist,

then the bias and skewness coefficients for the studentized inequality
measures are given by

k1,2 =
(
B−1/2M2 −

1
2
B−3/2M5

)
·
(
1− 2 · 1(0,1) (α)

)
,

k3,1 = B−3/2 (M4 + 6M1M3 − 3M5) ·
(
1− 2 · 1(0,1) (α)

)
,

where 1(0,1) is the indicator function on the interval (0, 1) and

B = µ21µ2α + α
2µ2αµ2 − 2αµαµ1µα+1 − (1− α)

2 µ2αµ
2
1,

M1 = µ1µα+1 − µ21µα − αµαµ2 + αµαµ
2
1,

M2 = µα+1 − µ1µα −
1
2
α (α + 1)

µα

µ1

(
µ2 − µ

2
1

)
,

M3 = µ1
(
µ2α − µ

2
α

)
−
1
2
α (α + 1) µα (µα+1 − µ1µα)

−αµαM2,

M4 = µ31
(
µ3a − 3µ2αµα + 2µ3α

)
− 3αµαµ21

(
µ2α+1 − µ2αµ1 − 2µα+1µα + 2µ2αµ1

)
+ 3 (αµα)2 µ1

(
µα+2 − 2µα+1µ1 + 2µαµ21 − µαµ2

)
− (αµα)

3 (µ3 − 3µ2µ1 + 2µ31) ,
M5 = 2

(
µ21µ2α +

(
α2 − α

)
µ1µαµα+1 − α

3µ2µ
2
α

+ (α − 1) (1− α)2 µ21µ
2
α

)
(µα+1 − µ1µα)

+α2µ1µ
2
α (µα+2 − µ2µα)+ 2µ1

(
α2µαµ2 − αµ1µα+1

− (1− α)2 µ21µα
) (
µ2α − µ

2
α

)
+ 2α2µ1µ2α (µα+2 − µ1µα+1)
− 2αµ21µα (µ2α+1 − µa+1µα)
−αµ21µα (µ2α+1 − µ1µ2α)+ µ

3
1 (µ3α − µαµ2α)

− 2αµα
(
µ1µ2α − αµαµα+1 − (1− α)2 µ1µ2α

) (
µ2 − µ

2
1

)
−α3µ3α (µ3 − µ1µ2) ,

and µα is the αth moment of the income distribution F .3

All moments µα exist under the regularity assumptions we
made for the existence of the Edgeworth expansion above.
Appendix B presents simulation support for the expressions in
Proposition 6. The term B directly relates to the variance and is
therefore bounded away from zero. This leads to the following:

3 The R andMathematica computer code for these expressions are available from
the authors upon request.
The interpretation of the individual contributions is made plain in the derivation
contained in Appendix A.1.
Corollary 7. The coefficients k1,2 and k3,1 can be estimated
√
n-

consistently using corresponding sample moment for the theoretical
moments in Proposition 6.

The second-order Edgeworth expansion for the studentized
inequality index is given by (6) with k1,2 and k3,1 given in
Proposition 6.
We proceed by analysing the behavior of the cumulants,

Edgeworth densities, and normalizing transforms in turn. Each
casewill be introduced by considering theGammadistribution and
I (2), since this is an attractive example that allows simple explicit
analytical solutions. This will be our leading example.

4.1. Bias and skewness coefficients

We examine the behavior of the bias and skewness coefficients
for the income distributions studied earlier, namely the Gamma,
Lognormal, and Singh–Maddala distributions. These parametric
distributions give the population moments used in Proposition 6
for the calculation of the coefficients. The aim is to gain insight into
the poor performance of the Normal approximation by examining
the magnitude of the coefficients. This will help to predict when
first-order methods can be expected to be poor. By varying α we
also highlight the statistical implications of a particular choice of α
that is usuallymade by researchers on the basis of economic, rather
than statistical considerations.

4.1.1. The Gamma distribution
We first consider our leading example. Substituting the

theoretical moments of the Gamma distribution in Proposition 6,
we obtain after some simplification:

k1,2 = −
3
√
2

r + 3
√
r (r + 1)

and k3,1 = −
8
√
2

r + 4
√
r (r + 1)

. (15)

Both cumulants decrease in magnitude as r increases. In terms of
the parametrization of Table 1, we have with r = 3, k1,2 = −3.67,
and k3,1 = −11.43, so that for samples of size 100 bias and
skewness are of moderate size.

4.1.2. Other values of the sensitivity parameter α and income
distributions
Fig. 3 depicts the contour plots of k1,2 and k3,1 as we vary the

sensitivity parameter α of the inequality index and the relevant
parameters of the income distribution.
The coefficients share important features across all three

income distributions. (i) All bias and skewness coefficients are
negative (ii) except for small values of α, bias and skewness
increase in magnitude as α increases (iii) bias and skewness
decrease with r in the Gamma case4 and with b in the

4 The Gamma case given by (15) corresponds to the top-most horizontal section
of the first panel of Fig. 3. Further analytical solutions are for instance:

a. In the Gamma case, fixing r = 3 and varying α instead, we obtain

k3,1 = −
2
√
3

(
−
(
α2 + 3

)
Γ 2 (3+ α)+ 6Γ (3+ 2α)

)−3/2
× (Γ 3 (3+ α)

(
18α2 + α3 + 3α4 + 18

)
+ 36Γ (3+ 3α)

− 18Γ (3+ 2α)Γ (3+ α)
(
2α2 + 3

)
)×

(
1− 2 · 1(0,1) (α)

)
. (16)

Skewness increases in magnitude for α > 0.5. Obviously, this expression and
(15) coincide for α = 2 and r = 3.

b. In the Lognormal case with sd = v1/2 and α = 2 fixed we obtain

k3,1 =
(
4ev − 4e2v + e4v − 1

)−3/2
×
(
−2e12v + 12e8v + 12e6v − 48e5v − 36e4v + 136e3v − 96e2v + 24ev − 2

)
.

Skewness increases in magnitude with sd.
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Fig. 3. Bias and skewness coefficients k1,2 and k3,1 as functions of relevant parameters of the income distributions, and of the sensitivity parameter of the inequality index.
Singh–Maddala case (holding c constant and chosen so that
all relevant moments exist), and they increase with sd in the
Lognormal case (iv) the numeric values of the coefficients are of
quantitative importance, as dividing themby the square root of the
sample sizes considered in Section 2.3 yields valueswhich are large
relative to the Gaussian limit values of zero. This explains the poor
behavior of the normal approximation observed in Section 2.3.
Finally we note on the basis of Fig. 3 that problems increase as

α increases. Hence, we recommend choosing α as low as possible
within the set of economically acceptable α’s.

4.2. Edgeworth densities

We use our leading example of the Gamma distribution with
I (2) to highlight the main issues involved in the Edgeworth ap-
proximation. Other income distributions lead to similar qualitative
conclusions and are not reported.
Using (15) and (7), we obtain the second-order approximation

pdf (x) = φ (x)

[
1− n−1/2x

√
2

6
√
r (r + 1)

(
4x2 (4+ r)− 3r − 21

)]
+O

(
n−1

)
.

Fig. 4 depicts the actual density of the studentized inequality
index obtained by simulation, and two versions of the Edgeworth
density for the case r = 3 andn = 100. The first Edgeworth density
uses the theoretical coefficients, and the second uses the empirical
version based on sample moments and Corollary 7. This empirical
version can be thought of as the mean Edgeworth expansions
when averaged over simulation iterations. By the linearity of the
density functions in terms of the k1,2 and k3,1, this simply equals
the Edgeworth density evaluated at the averaged estimates of k1,2
and k3,1.
Both approximations are an improvement over the Normal ap-

proximation in that they capture the skewness of the distribution.
Several features are noteworthy, however. First, the Edgeworth
Fig. 4. Density estimates. Notes: The income distribution is G(3,.), the sensitivity
parameter of the inequality index is α = 2, and the sample size is n = 100. The
solid line depicts the simulated density of S, the first dashed line (– · ·–) depicts the
Edgeworth density based on the theoretical k1,2 and k3,1 , and the second dashed
line (– · –) is the Edgeworth density based on the estimated k1,2 and k3,1 . Kernel
density estimates based on 105 replications.

density is not guaranteed to be positive and we see that the right-
hand tail actually becomes negative, although less so for the empir-
ical than for the theoretical Edgeworth approximation. Second, the
right tail of the theoretical Edgeworth density decays too quickly.
The third problematic feature is oscillations in the tails of the

approximation. A graph for r = 0.6, shows this more clearly, but is
not included for reasons of space. The problemof oscillation, which
is also present for the other income distributions studied here, is
well known (see e.g. Niki and Konishi (1986)), and motivates the
search for a normalizing transform.

4.3. Transforms for inequality measures

We turn to deriving the normalizing transforms for the three
distributional cases discussed above. The relative simplicity of
the Gamma case with I (2) yields an explicit analytical solution.
Typically, however, the transform is computed using numerical
techniques which we develop and implement below. We then
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Fig. 5. Transforms for different distributions and α’s. Notes: On the horizontal axis is I (itself a function of parameters), and on the vertical axis is t(I). The Singh–Maddala
case at the bottom requires a restriction and b = 3.5 is chosen in the left-hand panel and c = 3.5 in the right-hand panel.
provide a systematic discussion of the properties of the transforms
across income distributions and sensitivity parameters.

4.3.1. The Gamma case revisited
Using the formulas for k1,2 and k3,1 in (15), and using the fact

that I (2) = (2r)−1, the differential equation (13) becomes

t ′′(I)
t ′(I)
= −

4
3
1
I
1+ 8I
1+ 2I

.

Integration yields the exact solution (using constants of integration
0 and 1)

t(I) = −3I−1/3 +
140
81
21/3 ln

(
I1/3 + 2−1/3

)
−
70
81
21/3 ln

(
I2/3 − I1/32−1/3 + 2−2/3

)
−
140
81
31/221/3 arctan 3−1/2

(
24/3I1/3 − 1

)
−
118
27

I2/3

1+ 2I
−
16
9

I2/3

(1+ 2I)2
−
2
3

I2/3

(1+ 2I)3
. (17)

The transformation for this particular case is depicted in the second
panel of Fig. 5. As this figure also collects the transformations
for other values of the sensitivity parameter α, and other income
distributions, we postpone its discussion.
4.3.2. Numerical solutions
The Gamma example with α = 2 is special for two reasons.

First, because the simple form of the differential equation. Second,
there is a simple invertible relation between the inequality index
and the parameters of the distribution. This relation is no longer
trivial whenα 6= 2, and in general there is no analytically tractable
relation for other distributions. It is possible however to obtain
a numerical inverse and to solve the differential equation (13)
numerically. This involves three steps:

1. Using the general formulas for the cumulants k1,2, k3,1, and σ 2
we can use the theoretical moments from a specific income
distributions to express the cumulants k1,2, k3,1, andσ 2 in terms
of parameters from the income distribution.

2. We express the cumulants k1,2 and k3,1 in terms of I . This
requires the inverse of I which we calculate numerically. The
inverse can be determined if I depends on one parameter
only. This obviously holds for one parameter families, but also
for the Log-Normal and Gamma distributions, because I is
scale invariant. This invariance property is inherited by the
cumulants, so that k1,2 and k3,1 depend only on the shape
parameter and we can express them as functions of I .
For other distributions we can choose a one-dimensional

path for the parameters such that I becomes an invertible
function. This can be achieved by imposing the right number
of restrictions (d − 1, if I depends on d income parameters),
or by making the d income distribution parameters a function
of only one parameter. In our Singh–Maddala distribution we
show what difference the restriction makes by first holding b
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Fig. 6. Normalizing Transforms for different distributions and fixed α = 2. Notes:
On the horizontal axis is I (itself a function of parameters), and on the vertical axis
is t(I). For the two Singh–Maddala cases b = 3 and c = 3 fixed are chosen.

fixed, such that I is an invertible function of c only, and then
holding c fixed.

3. We solve the differential equation (13) numerically.5

The solutions depend, in general, on the sensitivity parameter
α, which is a fixed known constant, the true underlying
distribution, and the restriction chosen in step 2.6
Since no analytical solutions are available in general, we display

the transforms graphically in Figs. 5 and 6. Fig. 5 shows the
transforms for different values of the sensitivity parameter α and,
in each panel, we consider a different income distribution. In Fig. 6
we compare the transforms across income distributions when α is
fixed at 2. For the Singh–Maddala income distribution, we display
the solutions for the two restrictions, keeping b fixed and c fixed,
separately.
The figures have been generated by setting the initial conditions

of the differential equation such that the solutions cross the
horizontal axis at the same point at an angle of 45 degrees.
Recall that the transforms are invariant to affine transformations
and hence choosing the constants of integration in this way is
inconsequential. In order to relate the curvature of the transforms
to the untransformed case, we have also depicted the 45 degree
lines, which represent the identity transforms. Consequently, if no
transformationwas required, the solutionwould coincidewith this
45 degree line.
Consider Fig. 5 first. We see that for all the distributions the

transforms change substantially as we vary α. The transform for
α = 2 is the one most curved in all four cases. This implies
that α = 2 requires, informally speaking, the biggest amount of
transformation to obtain a standard Normal distribution. Recall
from the previous simulations that α = 2 is the most troublesome
case. For α = 0, the least amount of adaptation is required in
the Lognormal and Singh–Maddala cases, whereas for the Gamma
case, α = 0.5 is slightly flatter than α = 0. The behavior of the

5 The Mathematica and R code is available from the authors upon request.
6 A complimentary approach is to consider Box-Cox transforms as in Gonçalves
and Meddahi (2008) in the context of realized volatility modelling. Solving
differential equation (13) above provides a solution for the optimal Box-Cox
parameter in the sense that, within this class of transformations and without
accounting for the fact that k3,1 and σ depend on I, the optimal Box-Cox parameter
β∗ = 1+ I 13

k3,1
σ
yields λ3,1 = 0.β∗ could be estimated using our Proposition 6. We

are grateful to a referee for alerting us to this.
transform is therefore not monotonic in α. For the Singh–Maddala
distribution we see quite a difference between the case where we
hold b constant andwherewehold c fixed. This is related to the fact
that I , and the gradient of I with respect to b change much faster
than with respect to c. This has a further consequence that the
domain of definition of the numerical transform is much broader
for c fixed than for b fixed. This can be seen from the graph e.g. for
α = 2 the numerical transform is only calculated for I between
approximately 0.055 and 0.095 for b fixed and between 0.03 and
0.28 for c fixed.
Next, we compare the transforms in Fig. 6 across income

distributions when α = 2. The figure shows that the transforms
vary substantially between income distributions. The transform
for the Singh–Maddala case with b-fixed is the most extreme,
whereas theGamma case ismoremoderate. TheGamma transform
is therefore conservative and will not be optimal for specific
parametric alternatives, but will correct for certain amount of
skewness and will be superior to first-order asymptotics. In the
next section we show that the improvement is substantial.

4.3.3. Densities of the normalized transform and confidence intervals
We examine the extent to which the transformed statistics are

distributed closer to a standard Normal distribution in samples
of size n = 100, and the inferential improvements that this
entails. We simulate the densities of the studentized inequality
measure S, and the studentized bias-corrected transform T based
on Corollary 4. The top panel in Fig. 7 considers the Gamma case for
which we derived an exact solution for the transform in Eq. (17).
The actual finite sample density of S departs substantially from
the limiting density (the same S has been considered in Fig. 4).
In particular, the density is skewed to the left and is biased. The
transformsucceeds in substantially reducing the skewness, and the
bias correction shifts the density to the right. The resulting density
for T is much closer to the Gaussian density.
The two lower panels in Fig. 7 also show the resulting

distributions for the Lognormal and Singh–Maddala cases. The
graph shows that the distributions of T are again closer to
the Gaussian distribution than that of S, with the exception of
the transform based on the Singh–Maddala distribution holding
b fixed. This was the most extreme transform in Fig. 6. The
transforms actually seem to overcompensate the skewness as the
distribution of T is now skewed to the right. The actual quantiles of
the distributions are shown in Table 3. For the Singh–Maddala case
we use the case holding c fixed.7 The table also shows the results of
using the Gamma transform, Tγ bc , when in fact the distribution is
Lognormal or Singh–Maddala. The Gamma transform was chosen
for two reasons: it is a conservative choice which will correct
without being excessive (such as the Singh–Maddala case with b
fixed, last panel Fig. 7). Second, it has an explicit analytic solution
with domain of definition the whole positive real line.
The table reiterates the improvements shown in Fig. 7, and

in addition shows that the Gamma transform gives reasonable
improvements even if the true distribution is not Gamma. As
regards to the left tail in the Lognormal and Singh–Maddala case,

7 The choice of restriction used to establish an invertible relation between the
index and parameters is not innocuous, however, since holding b fixed instead of c
leads to a coverage that is far worse with 19% coverage failure (of which 2% points
are caused by the fact that Î falls outside the domain of definition of the numerical
transform). This implies that care needs to be taken with this choice. One option
would be to use a path in the parameter space for which the change in the index I is
maximized. This requires a further solution to a differential equation, which is not
difficult, but would complicate the exposition. The path holding c fixed is closer to
this direction thanholding b fixed. The optimal direction is (0.97,0.23)when b = 3.5
and c = 3.0 and (0.99,0.16) when b = 3.5 and c = 3.5, hence close to holding c
fixed and little gain is therefore expected from determining the optimal restriction.
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Table 3
Quantiles for I (2) and n = 100. Notes: based on 106 replications.

p Φ (p) G(.,3) LN(.,
√
0.1) SM(.,3.5,3.0)

S Tbc S Tbc Tγ bc S Tbc Tγ bc

0.025 −1.96 −2.98 −2.04 −3.17 −2.05 −2.29 −2.91 −1.90 −2.09
0.05 −1.64 −2.45 −1.75 −2.59 −1.77 −1.93 −2.39 −1.64 −1.79
0.10 −1.28 −1.89 −1.42 −1.97 −1.44 −1.53 −1.83 −1.34 −1.43
0.25 −0.67 −1.02 −0.83 −1.06 −0.86 −0.86 −0.99 −0.82 −0.82
0.50 0.00 −0.18 −0.13 −0.19 −0.17 −0.10 −0.19 −0.20 −0.11
0.75 0.67 0.51 0.60 0.51 0.58 0.64 0.51 0.53 0.62
0.90 1.28 1.04 1.33 1.03 1.36 1.30 1.03 1.36 1.30
0.95 1.64 1.33 1.83 1.32 1.91 1.72 1.31 2.00 1.73
0.975 1.96 1.59 2.28 1.56 2.45 2.10 1.56 2.75 2.11
Fig. 7. Simulated densities of S and T for various income distributions. Notes:
Sample size is n = 100. Parameter values: Gamma: r = 3, Lognormal: ν2 = 0.1,
Singh–Maddala: b = 3.5, c = 3. Kernel density estimates based on 105 replications.

the Gamma transform is not sufficiently curved, but for the right
tail the lesser curvature of the Gamma transform actually gives an
improvement over the corresponding transforms. We quantify the
net effect by considering the confidence intervals next.
Table 4 reports the coverage errors of one- and two-sided

confidence intervals with nominal 2.5% coverage failures in the
tails, using the Gaussian critical values of ±1.96. Across all
distributions the transforms improve the overall failure rates,
bringing the actual much closer to their nominal values. Moreover
the transforms result in far more symmetric failure rates than
standard first-order methods. Applying the Gamma transform in
the Lognormal case leads to performance almost the same as using
Table 4
Actual coverage failure rates of confidence intervals for I (2) and n = 100. Notes:
based on 106 replications.

G(.,3) LN(.,
√
0.1) SM(.,3.5,3.0)

S Tbc S Tbc Tγ bc S Tbc Tγ bc

L 9.2 3.0 10.1 3.2 4.8 8.5 2.1 3.4
R 0.7 4.1 0.6 4.7 3.2 0.6 5.2 3.3
T 9.9 7.1 10.8 7.9 8.0 9.1 7.3 6.7

the Lognormal transform. For the Singh–Maddala case it actually
leads to amore symmetric coverage errors and a net improvement.

4.3.4. Bootstrap
Applying the transform is theoretically attractive and computa-

tionally cheap and results in substantial improvements as shown
in the previous section. Further improvements can be obtained by
applying an additional bootstrap to the studentized transform as
inMarsh (2004).8 The idea is that the transform is more symmetri-
cally distributed and bootstrapping converges faster for symmetric
distributions. Corollary 5 has made this gain explicit.
Table 5 reports the coverage errors of one- and two-sided

bootstrap confidence intervalswith nominal 2.5% coverage failures
in the tails, and hence directly compares to Table 4. We see
that in all cases bootstrapping improves coverage rates. In the
Lognormal case, for instance, the overall coverage rate is reduced
from 7.9% to 5.8%. For comparisons we have also applied a
bootstrap to the studentized inequality index S. The bootstrap of
the transform gives better results than those for S. The extend of
the improvements mirrors those reported in Marsh (2004, p. 981)
in a different setting.9 See also Biewen (2001) and Davidson and
Flachaire (2007) who also investigate bootstrap methods.

5. An application to regional inequality comparisons in Côte
d’Ivoire

This section illustrates the application of our procedures in
the context of regional comparisons of income and expenditure
inequality. Inequality measures are often used in determining the
targeting of policy interventions, and targeting might be based
on observed differences in measured inequality across regions.
Such policy interventions by governments or the World Bank

8 Thanks to a referee for pointing this out.
9 We have also investigated the studentized double bootstrap, following the
implementations in Hinkley and Shi (1989) and Davison and Hinkley (1997, section
5.6). In view of the computational cost we have repeated the experiment 10,000
times, drawing in each iteration R = 999 bootstrap samples, and M = 249
bootstrap subsamples. The results are similar to the single studentized bootstrap
(and the results for the single bootstrap are virtually same as those reported in
Table 5). In particular, we obtain total coverage failures of 6.8%, 7.3%, and 6.3% for
the G, LN and SM cases respectively.
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Fig. 8. Income and expenditure densities for households in region 4. Notes: Incomes and expenditures are in Central African Francs divided by 106 . Non-parametric kernel
estimate (solid line), fitted SM density (· · ·), fitted LN density (– –), and fitted G density (– · –). The maximum likelihood point estimates for the income distributions are
SM(1.4× 106 , 1.86, 1.92), LM(13.7, 0.78), G(1.6, 1.3× 10−6), and for expenditure are SM(1.7× 106 , 2.49, 1.96), LM(13.99,0.58), G(2.47, 1.8× 10−6).
Table 5
Actual coverage failure rates of confidence intervals based on the bootstrap for I (2)
and n = 100. Notes: based on 106 replications; in each iteration R = 999 bootstrap
samples were drawn.

G(.,3) LN(.,
√
0.1) SM(.,3.5,3.0)

S T S T Tγ S T Tγ

L 1.8 2.0 1.6 1.6 1.9 1.8 0.5 1.9
R 4.6 4.2 5.0 4.2 4.9 3.9 2.6 3.7
T 6.4 6.2 6.6 5.8 6.8 5.7 3.1 5.6

often involve large sums of money. The accuracy of the inequality
estimates should be taken into account in the targeting decision,
and we have shown above that, for sample sizes and distributions
considered in this paper, confidence intervals based on the Normal
approximation tend to be too short and mislocated.
In this examplewe use household income and expenditure data

from the Côte d’Ivoire Living Standards Survey (CILSS)which forms
part of the World Bank’s Living Standard and Measurement Study
(LSMS).10 The data have been used extensively in appliedwork, see
e.g. Deaton (1998) and the references therein.
The five regions are Abidjan (1), Other Cities (2), East Forest

(3), West Forest (4), and Savanna (5). Given concerns about gross
measurement error and outliers, we follow standard practice and
drop the 2.5% most extreme income observations. This results
in sample sizes by region of 288, 314, 353, 232, 295 households
respectively.
The actual income and expenditure densities are captured

reasonably well by the parametric densities studied in this
paper. Fig. 8, depicting the estimated densities for region 4, is a
representative example. The figure juxtaposes the non-parametric
kernel density estimatewith the fitted Singh–Maddala, Lognormal,
andGammadensities. All parametric densities capture the features
of the actual data, and the Singh–Maddala density is in closest
agreement with the non-parametric estimate.
For inequality measure I(2) Table 6 reports the results by

region. The point estimates are reported in column 2 and exhibit
substantial variation across the five regions. The confidence limits
(CL) of the standard 95% equi-tailed confidence interval based on
the normal approximation are reported next in columns 3 and 4.
These confidence intervals vary, of course, in terms of location, but
also in length. For instance, the confidence interval for region 5
is nearly three times as long as the one for region 1. Also, most

10 The income and expenditure data are for the year 1985, generated by theWorld
Bank, and given in Central African Francs (CAFs). Extensive documentation is posted
at http://www.worldbank.org/LSMS/country/ci/ci85docs.html.
confidence intervals overlap in the case of income: the confidence
interval for region 1 overlaps with all others except for region 3.
We turn to our procedure. We transform the inequality measure
using the Gamma transform and apply a subsequent studentized
bootstrap. We have argued above that the Gamma transform is
a conservative choice. Columns 6 to 8 report the results, and
show substantially different confidence limits. In particular, the
confidence limits shift to the right in all cases, and in all but
one case the confidence intervals widen. The widening is most
substantial for region 5. Since the confidence intervalswidenwedo
not expect and do not observe a reversal of the regional inequality
ranking.

6. Conclusions

The finite sample distribution of the studentized inequality
measure is not located at zero and is substantially skewed.
In the first part of the paper we have derived general non-
parametric bias and skewness coefficients based on cumulant
expansions. We have shown that these coefficients are of interest
in their own right, and they are also the key quantities for the
Edgeworth expansions and the normalizing transforms considered
in the second part of the paper. Edgeworth expansions directly
adjust the asymptotic approximation by including the O

(
n−1/2

)
term, a function of the bias and skewness coefficients. In
contrast, normalizing transformations of the inequality measure
are designed to annihilate this term asymptotically. The observed
problems for the Edgeworth expansion of negativity of the density
and tail oscillation have led us to derive and construct the
normalizing transforms in the second part of this paper. We have
shown that the finite sample distributions of these transforms are
much closer to the Gaussian distribution. This results in improved
inference, for example in the coverage rates of confidence intervals.
We have shown that applying a subsequent bootstrap yields a
further improvement for inference, both in theory and in practice.
Asymptotically we obtained approximation error of order n−3/2 for
confidence intervals, which is the same rate as Beran’s (1987) pre-
pivoted bootstrap. In practice we found actual coverage errors of
the new confidence intervals close to the nominal rate.
We have illustrated our procedure with an application to

regional inequality measures in Côte d’Ivoire. We showed that the
resulting confidence intervals can be substantially different from
those based on the Normal approximation commonly used in the
applied literature.

http://www.worldbank.org/LSMS/country/ci/ci85docs.html
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Table 6
Confidence intervals for income and expenditure inequality in Côte d’Ivoire by region.

Normal approximation transform+ bootstrap
Region Î(2) lower CL upper CL length lower CL upper CL length

income
1 0.259 0.222 0.296 0.074 0.226 0.301 0.075
2 0.339 0.291 0.387 0.095 0.297 0.390 0.092
3 0.440 0.363 0.517 0.154 0.370 0.534 0.164
4 0.311 0.250 0.372 0.123 0.257 0.395 0.138
5 0.348 0.250 0.446 0.196 0.264 0.569 0.306

expenditure
1 0.147 0.127 0.166 0.039 0.128 0.167 0.039
2 0.200 0.172 0.229 0.057 0.175 0.232 0.057
3 0.281 0.227 0.334 0.107 0.231 0.351 0.120
4 0.201 0.153 0.250 0.097 0.159 0.260 0.101
5 0.194 0.147 0.241 0.094 0.152 0.263 0.111
Appendix A. Proofs

Proof of Lemma 1. Expand T (̂I) about I to second order and use
the definition of S to obtain

n1/2

σ̂

t (̂I)− t(I)

t ′
(̂
I
) = S −

1
2
t ′′(I)
t ′ (I)

n−1/2σ̂ S2 + O
(∥∥∥Î − I∥∥∥2) .

Now using the fact that σ̂ and Î are
√
n consistent estimators the

result follows.

Proof of Lemma 2. Taking expectations of (9) using E (S) =
n−1/2k1,2 + O

(
n−3/2

)
, and E

(
S2
)
= 1+ O

(
n−1

)
leads to

λ1,2 = k1,2 −
1
2
t ′′(I)
t ′(I)

σ .

Also E
(
T 2
)
= 1+ O

(
n−1

)
. We have

T 3 = S3 −
3
2
t ′′(I)
t ′(I)

n−1/2σ S4 + Op
(
n−1

)
.

Taking expectations, noting that E
(
S4
)
= 3+ Op

(
n−1/2

)
, yields

E
(
T 3
)
= E

(
S3
)
−
9
2
t ′′(I)
t ′ (I)

n−1/2σ + O
(
n−1

)
,

with E
(
S3
)
= n−1/2

[
k3,1 + 3k1,2

]
. Therefore E(T 3)−3E(T 2)E(T )+

2 (E(T ))3 = n−1/2λ3,1 + O
(
n−1

)
with

λ3,1 = k3,1 − 3
t ′′(I)
t ′(I)

σ .

Proof of Proposition 3. Note that λ3,1 = 0 by construction.
Considering the Edgeworth expansion Eq. (10) for T at x+n−1/2λ1,2,
expanding it about x and collecting terms of the same order yields
the stated result.

Proof of Proposition 5. Let Tbc = T − n−1/2λ̂1,2. By Corollary 4

K (x) ≡ Pr {Tbc ≤ x} = Φ(x)+ O(n−1).

It follows that the three-term Edgeworth expansion and
Cornish–Fisher expansion are

K (x) = Φ (x)+ n−1q (x) φ (x)+ O
(
n−3/2

)
and K−1 (1− α) = z1−α − n−1q (z1−α) + Op

(
n−3/2

)
where z1−α

denotes the (1− α) quantile of Φ . Let K̂ denote the bootstrap
distribution. Then K̂−1 (1− α) = K−1 (1− α) + Op
(
n−3/2

)
since

q̂ (x) = q (x)+ Op
(
n−1/2

)
. We have

Pr
{
I ≤ Îα

}
= 1− Pr

{
Tbc ≤ z∗1−α

}
= 1−

[
Φ
(
z∗1−α

)
+ n−1q

(
z∗1−α

)
φ
(
z∗1−α

)]
+ O

(
n−3/2

)
= 1−

[
Φ
(
z1−α − n−1q (z1−α)

)
+ n−1q

(
z1−α − n−1q (z1−α)

)
φ
(
z1−α − n−1q (z1−α)

)]
+O

(
n−3/2

)
= 1−

[
Φ (z1−α)− n−1q (z1−α) φ (z1−α)+ n−1q (z1−α) φ (z1−α)

]
+O

(
n−3/2

)
= α + O

(
n−3/2

)
.

See also Hall (1992, p. 122 ff.).

A.1. Proof of Proposition 6

Proposition 6 is derived in several steps. First, we derive an
asymptotic expansions of the studentized inequalitymeasure S. As
a compact notation, we use Sq to denote a term of an expansion
of S which is of order in probability n−q. The desired stochastic
expansion of S is of the form

S = S0 + S1/2 + Op
(
n−1

)
. (18)

We determine the terms S0 and S1/2. We then derive the bias and
skewness coefficients k1,2 and k3,1 by considering expectations of
powers of S. We only consider the case |α| > 1 explicitly. For
|α| < 1, the coefficients of the expansions need to be multiplied
by−1 since α (α − 1) < 0 but (α2 (α − 1)2)1/2 > 0.

A.1.1. The stochastic expansion of S
Recall our notation for population and sample moments,

µα(F) =
∫
yαdF(y) and mα = µα (̂F). The basic technique

in the derivation is to center and expand sample moments. For
instance, we have m−α1 =

(
µ1 + n−1

∑
(Xi − µ1)

)−α
= µ−α1 −

αµ−α−11

(
n−1

∑
(Xi − µ1)

)
+ Op

(
n−1

)
. For this technique it is

convenient to define the following stochastic quantities:

Y1 = (X − µ1) , (19)
Y2 = µ1 (Xα − µα)− αµα (X − µ1) ,
Y3 = (Xα − µα)− α (α + 1) µαµ−11 (X − µ1) /2,

Y4 = 2
(
µ1µ2α − αµαµα+1 − (1− α)2 µ1µ2α

)
(X − µ1)

+α2µ2α
(
X2 − µ2

)
+ 2

(
α2µαµ2 − αµ1µα+1 − (1− α)2 µ21µα

)
(Xα − µα)

− 2αµ1µα
(
Xα+1 − µα+1

)
+ µ21

(
X2α − µ2α

)
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with specific elements for observation i written like Y1,i =
(Xi − µ1), etc.
We derive the stochastic expansion of S = n1/2

(̂
I − I

)
/σ̂ in

four steps.
First, write out the numerator

n1/2(̂I − I) = n1/2
[
α2 − α

]−1
µ−α1 m

−α
1

[
µα1mα − µαm

α
1

]
.

Second, consider the asymptotic variance by applying the delta
method

σ 2 = aVar(n1/2(̂I − I)) =
1(

α2 − α
)2 1

µ2α+21

B0,

with

B0 =
[
α2µ2αµ2 − 2αµ1µαµα+1 + µ

2
1µ2α − (1− α)

2 µ21µ
2
α

]
. (20)

The variance is estimated by using the corresponding sample
moments. Denote the estimate of B0 by B̂0. Then combining the
results from steps 1 and 2 yields

S = n1/2̂B−1/20

[
mαm1 − µ−α1 µαm

α+1
1

]
.

Third, consider the expansion B̂0 = B0 + B1/2 + Op
(
n−1

)
. We

have

B̂−1/2 =
[
B0 + B1/2 + Op

(
n−1

)]−1/2
,

= B−1/20 −
1
2
B−3/20 B1/2 + Op

(
n−1

)
.

The term B1/2 is derived by centering and collecting terms of the
same order. It then follows that B1/2 =

[
n−1

∑
i Y4,i

]
.

Fourth, consider the term
[
mαm1 − µ−α1 µαm

α+1
1

]
by expanding

the functions of the sample moments. Putting everything together
and collecting terms of the same order, it follows that S = S0 +
S1/2 + Op

(
n−1

)
with

S0 = n1/2B
−1/2
0

[
n−1

∑
Y2,i
]
, (21)

S1/2 = n1/2B
−1/2
0

[
n−1

∑
i

Y1,i

][
n−1

∑
j

Y3,j

]

− n1/2
1
2
B−3/20

[
n−1

∑
i

Y2,i

][
n−1

∑
k

Y4,k

]
.

A.1.2. The asymptotic bias term k1,2
Taking expectations of the individual terms of (18) immediately

yields, because of centering, E(S0) = 0, and E(S1/2) =

n−1/2(B−1/2E(Y1Y3)−0.5B−3/2E (Y2Y4)). Since E (S) = n−1/2k1,2+
O
(
n−1

)
it follows immediately that

k1,2 = B
−1/2
0 E(Y1Y3)−

1
2
B−3/20 E (Y2Y4) , (22)

with E(Y1Y3) = M2 and E (Y2Y4) = M5 stated explicitly in
Proposition 6.

A.1.3. The asymptotic skewness term k3,1
In order to derive the asymptotic skewness term, we first

need to obtain an expansion of the third moment of S. We take
expectations of

S3 =
(
S0 + S1/2 + Op

(
n−1

))3
= S30 + 3S

2
0S1/2 + Op

(
n−1

)
.

by considering the constituent parts separately.
1.

E
(
S20S1/2

)
= n3/2B−3/20 E

(
n−4

∑
i

∑
j

∑
k

∑
l

Y2,iY2,jY1,kY3,l

)
− 0.5n3/2B−5/20

× E

(
n−4

∑
i

∑
j

∑
k

∑
l

Y2,iY2,jY2,kY4,l

)
.

Since we are only interested in the O
(
n−1/2

)
term, we conclude

that

E
(
S20S1/2

)
= n−1/2B−3/20

×

[
E
(
Y 22
)
E (Y1Y3)+ 2E (Y1Y2) E (Y2Y3)−

3
2
E (Y2Y4)

]
+O

(
n−1

)
,

after noting that E
(
Y 22
)
= B0.

2. Consider S30 = n3/2B−3/20 n−3
(∑
Y2,i
)3. Hence E(S30) =

n−1/2B−3/20 E(Y 32 )+ O
(
n−1

)
.

In summary

E(S3) = n−1/2B−3/2
(
E(Y 32 )+ 3

[
E (Y2Y2) E (Y1Y3)

+ 2E (Y1Y2) E (Y2Y3)−
3
2
E (Y2Y4)

])
+ O

(
n−1

)
. (23)

Finally, since K = n−1/2k31 + O
(
n−3/2

)
, and K3 = E

(
S3
)
−

3E
(
S2
)
E (S)+2 (E (S))3, using E

(
S2
)
= 1+O

(
n−1

)
, (22) and (23)

we conclude that

k3,1 = B
−3/2
0

[
E(Y 32 )+ 6E (Y1Y2) E (Y2Y3)− 3E (Y2Y4)

]
, (24)

where E(Y 32 ) = M4, E (Y1Y2) = M1, and E (Y2Y3) = M3 are stated
explicitly in Lemma 1.

Appendix B. Simulation evidence for k1,2 and k3,1

This section provides a comparison of the population bias and
skewness coefficients k1,2 and k3,1 as defined in Proposition 6 and
simulated k-statistics. The experiments are designed as follows.
Wedraw R independent samples of size n from incomedistribution
F and index the iteration by subscript r with r = 1, 2, . . . , R. The
resulting studentized inequality measure is denoted by Sr .
The scaled k-statistics are defined as follows. Consider the first

cumulant of S for which we have K1 = n−1/2k1,2 + O
(
n−3/2

)
or

k1,2 = n1/2K1 + O
(
n−1

)
.

The cumulant K1 is simulated using the k-statistic K̂1 = R−1
∑
r Sr

with K̂1 = K1 + Op
(
R−1/2

)
. Therefore

ksim1,2 ≡ n
1/2K̂1,

= k1,2 + O
(
n−1

)
+ Op

(
n1/2R−1/2

)
.

Similarly

ksim3,1 ≡ n
1/2K̂3,

= k3,1 + O
(
n−1

)
+ Op

(
n1/2R−1/2

)
,

where K̂3 = rR−1
∑
r

(
Sr − R−1

∑
r Sr
)3 with correction factor

r = R2/[(R− 1) (R− 2)] → 1 which ensures unbiasedness of this
k-statistic.
Fig. 9 depicts both k1,2 and ksim1,2 , and k3,1and k

sim
3,1 as functions

of the sensitivity parameter α of the inequality measure for the
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Fig. 9. Theoretical bias and skewness coefficients and simulated k-statistics for
the SM(.,3.5,3.5) income distribution. Notes: The solid lines depict the population
coefficients k1,2 and k3,1 as a function of α. The dashed lines are the simulated
k-statistics with n = 1000 and R = 106 repetitions.

Singh–Maddala SM(.,3.5, 3.5) income distribution. The simulated
values are based on n = 103 and R = 106 replications.
The simulated values are in good agreement with the theoretical
values. We have repeated these experiment for various income
distributions and arrive at similar conclusions.
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