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Abstract

Heavy-tailed distributions, such as the distribution of stock returns, are prone to generate large values. This renders difficult the
detection of outliers. We propose a new outward testing procedure to identify multiple outliers in these distributions. A major virtue
of the test is its simplicity. The performance of the test is investigated in several simulation studies. As a substantive empirical
contribution we apply the test to Dow Jones Industrial Average return data and find that the Black Monday market crash was not a
structurally unusual event.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many distributions in economics are ‘heavy’ or ‘long’ tailed such as the distributions of earnings or stock returns. It
is well known that such distributions are prone to generate extreme order statistics (such as the sample maximum)
which are very large relative to the central body of the data. It is convenient at this stage to distinguish between two
types of very large sample data. We refer to ‘extremes’ as large realizations of random variables which are generated by
the population distribution of interest. By contrast, we refer to ‘outliers’ as large sample values which do not belong to
the population of interest. The nature of such outliers depends on the context. In a standard cross-sectional setting in
e.g. labour economics, outliers can be interpreted as measurement error. Survey data is rarely free of measurement
error, this is an inevitable consequence of the tensions between the conflicting desires for accurate measurement and
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large sample sizes in the face of limited survey budgets. Such contaminations might occur from misreporting, such as
of annual for monthly income, or the presence of data miscoded by the data transcriber such as the classic decimal-point
error. In a financial time-series setting, outliers may be the consequence of structurally unusual events such as a market
crash. This paper is about the identification of outliers.

Identification of outliers is important in applications which focus on the tails of the distributions. A prominent class
of examples is the measurement of risk since the tail of the distribution informs about how wrong things can go wrong
if they go wrong. In finance, Value-at-Risk (VaR) has become, following the 1995 Basle Committee agreement, the
standard risk measure adopted by financial institutions to define the risk exposure of a financial position, and thus
determines capital requirements. Another measure focussing on the tail of the return distribution is the expected
shortfall, being the expected return conditional on the return not exceeding the value-at-risk. Extreme market
movements do occur from time to time for data described by heavy tailed distributions, and many distributions in
finance exhibit heavy tails with tail indices estimated around 3. More precisely, Gonzalo and Olmo (2004) report
estimates for log return data for Dax, Ibex, Nikkei and Dow Jones in the range from 2.4 and 3.2. Huisman, Koedijk,
Kool, and Palm (2001) study exchange rate data and provide estimates ranging from 3.1 to 8.2. Quintos, Fan, and
Phillips (2001) report estimates between 1.5 and 3 for Asian stock price indices. Danielsson and de Vries (1997) report
estimates around 3 for the Olson data of forex exchange rate contracts.

Besides finance, heavy tailed distributions play an important role in other fields as well. A classical application is
fitting the Pareto distribution to the upper tail of income or wealth distributions (Pareto, 1965; Klass et al., 2006).
Piketty and Saez (2003) investigate the income shares of top quantile groups over time. Schluter and Trede (2002)
establish statistical inference methods for the tails of Lorenz curves when the income distribution is heavy tailed. This
empirical literature takes it invariably for granted that there are no outliers in the data.

Our test procedure, developed for heavy tailed distributions which decay like power functions, has the major virtue
of being simple to implement. It is based on the ratio of successive extreme order statistics for which we derive the joint
distribution in closed form. As multiple outliers may mask their presence, ours is an outward testing procedure: we start
at the kth largest order statistic, test the ratio of this and the previous order statistic, and proceed to the next order
statistic up the sample maximum unless an outlier is detected. Critical values for the test are easily calculated.

A substantive empirical contribution of this paper is the application of our test to the problem of market crashes: was
Black Monday a structurally unusual event or just an extreme event consonant with the presumed return distribution?

Our contribution differs from recent papers in the literature by explicitly focussing on the identification of outliers rather
than considering exclusively extremes. But by seeking to distinguish outliers from extremes we build, of course, on this
literature. The study of extremes is the subject of extreme value theory. Given the sparseness of sample data for tails, the
extreme quantiles of a distribution are approximated via tail indices, such as the well-known Hill estimator. The generic
problem is to determinewhere the tail begins, i.e. which order statistics, viewed as exceedances over a threshold, to include
in the estimation. Recently, Gonzalo and Olmo (2004) have proposed a bootstrap method to determine statistically “which
extreme values are really extreme.” In contrast to Gonzalo and Olmo (2004) we do not seek to identify extreme values that
can be described by a tail distribution, but rather to identify extreme values that do not belong to them. Another approach is
taken by Huisman et al. (2001) who determine the threshold by resolving the mean-variance trade-off inherent in the Hill
estimator. We apply their proposed procedure to a robust version of the Hill estimator.

For a comprehensive review of extreme value theory see e.g. Embrechts et al. (1997) or Beirlant et al. (2004). Our
test statistics are ratios of extreme order statistics. Galambos (1978, 1984) reviews some relevant results for extreme
order statistics relating to differences and ratio. In particular, the differences of iid exponential variates X are
independent, and the marginal distributions are themselves exponential. It follows, using the transform Z=exp(X), that
Z has a Pareto distribution, and that the ratios of its order statistics are independent with marginal distributions which
are themselves Pareto. We show that similar results hold for distributions satisfying a more general domain-of-
attraction assumption. The classic categorisation of tail behaviour, due to Schuster (1984) is based on extreme spacings,
i.e. the difference between extreme order statistics. In particular long or heavy tailed distributions are prone to lead to
samples which ‘often’ have extremes, and their extreme spacings diverge with sample size. Moreover, extreme
spacings of Frechet variables are dependent. We therefore study the ratios which we show to converge and to be
independent. The categorisation is further elucidated in e.g. Freimer, Muholkar, Kollia, and Lin (1989) by considering
the rate of convergence of extreme spacings for specific short and medium tailed distributions via approximations to
their quantile functions. The use of the gap between the largest and second largest order statistic is also discussed in
Vandewalle, Beirlant, and Hubert (2004), who also propose a robust estimator for the tail index.
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The economics literature treats the problem of outliers unsystematically. For instances, ad hoc trimming is the
almost universal practice in labour economics. By contrast, the statistical literature has a tradition of seeking to identify
outliers, see e.g. the surveys of Barnett and Lewis (1994), Beckman and Cook (1983), and Hawkins (1980). An
important early contribution is Ferguson (1961). Davies and Gather (1993), and Rosner (1975, 1983) deal, among
other, with the problem of identifying multiple outliers. The early contributions focus specifically on outliers in normal
distributions. A recent contribution is Mittnik, Rachev, and Samorodnitsky (2001) who derive the limiting distribution
of the normalised range for samples in the domain of attraction of a stable law. The approximate critical values for the
range statistic are proposed as a basis for (single) outlier detection.

This paper is organised in the following way: Section 2 establishes the notation and formalises the notion of heavy-
tailedness. Section 3 presents the test procedures both for single and multiple outlier testing. In addition, we discuss the
problem of robustly estimating the tail index in the presence of possible outliers. In Section 4 we simulate the behaviour
of the test for single and multiple outliers in finite samples. It turns out that the tests are reliable in that their actual size is
close to the nominal size. We also derive the power of the test and show its consistency. The empirical application is
given in Section 5. Was the Black Monday market crash so extreme that it may be considered as an outlier not
belonging to the heavy tailed return distribution governing the usual returns? Since return data are time-series data we
pre-whiten the returns using an AR(1)-GARCH(1,1) model. We find evidence that the market crash was not a
structurally unusual event. Section 6 concludes. The Appendix collects the proofs.

2. Preliminaries

We consider the class of distributions with tails which decay like power functions. These tails are heavy. More
precisely, we assume that the cdf F satisfies, for some αN0 and sufficiently large x,

F xð Þ ¼ 1$ L0 xð Þx$a ð1Þ

where L0 is a slowly varying function.
2 For sufficiently large x the distribution becomes Pareto-like, as L0 then behaves

almost like a constant. The parameter α is referred to as the tail index. This class of distributions is very broad. Many
real world distributions are members of this class. We have enumerated in the introduction several examples in finance
with estimates of the tail index around 3. Parametric examples include the generalised beta distribution (McDonald,
1984), nesting the Pareto, Singh-Maddala or Burr XII and the Dagum distributions as special cases, stable distributions
with characteristic exponent in (0, 2), and Student's t-distributions with α equal to the degrees of freedom. Even
medium tailed distributions can be approximated by setting the tail index sufficiently large. F lies in the domain of
attraction of the Frechet distribution, being the only heavy-tailed limiting distribution of the sample maximum.

Next we define extremes and outliers. Consider a sample of size n and the associated order statistics X1,n≥X2,n≥…≥
Xk,n≥…≥Xn,n. The problem about which we want to make inferences is that the k extreme order statistics (Xk,n to X1,n)
might, ormight not, have been generated byF, the distribution of interest. For instance, the associated sample datamight be
contaminations, either measurement error or structurally unusual events. If the k extreme order statistics have not been
generated by Fwe refer to them as ‘outliers’, otherwise they are ‘extremes’. The problem of inlying contaminations is not
considered. We specify a sequence of null hypotheses indexed by k: underH0,k the kth order statistic is an extreme and not
an outlier:

The null hypotheses H0,k, with k=1, 2,…: the kth extreme order statistic Xk,n belongs to the population of interest F.
When k=1 the test is for only a single outlier. When kN1 we consider the possibility of multiple outliers, and we test

the sequence of null hypotheses H0,k, H0,k− 1,…, H0,1. This is an outward testing procedure which addresses the
masking problem stemming from multiple outliers, discussed in more detail below.

We base our testing procedure on ratios Rτ=Xτ,n /Xτ+1,n of order statistics, since these converge whereas it is well
known that for heavy-tailed distributions extreme spacings diverge and are dependent.3 It is therefore important to

2 Consider limx→ x0g(tx) /g(x) with tN0. The function g is regularly varying at x0 if the limit equals tθ with θb0, and slowly varying if θ=0. We
consider variation at infinity. F̄ is regularly varying with θ=−a.
3 In fact, R1=Op(1) implies that D1=X1,n−X2,n=Op(n

1 / a). This is seen immediately by noting that R1=D1 /X2,n+1 and cn
−12 X2,n converging to

the Frechet distribution where cn=n
1 / aL0(n).
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derive the marginal and the joint distribution of such ratios under the null hypothesis of no outliersH0,1. It turns out these
have a simple form. First, we state a more general theorem about the marginal distribution of the ratios Xτ,n /Xτ+ t,n.

Theorem 1. Consider Xτ,n /Xτ+ t,n with τ and t fixed. Its asymptotic distribution is given by

FXs;n=Xsþt;n yð ÞY
d

1$ y$as
Xk$1

j¼0

1$ y$a½ ' j 1
j!
C sþ jð Þ
C sð Þ

 !

;

where Γ denotes the Gamma function.
The asymptotic distribution of Rτ=Xτ,n /Xτ+1,n is a special case, whence

FRs yð ÞY
d

1$ y$asð Þ ¼ 1$ y$að Þ
Xs$1

j¼0

y$að Þ j: ð2Þ

In particular, for R1=X1,n /X2,n we have convergence to a Pareto distribution with parameter equal to the tail index α.
Next we state the joint distribution of the ratios R1,…, Rk.

Theorem 2. The asymptotic joint distribution of R1,…, Rk is

FR1; N ;Rk r1; N ; rkð Þ ¼ j
k

i¼1
1$ r$a

i

! "Xi$1

j¼0

r$a
i

! "j¼ j
k

i¼1
FRi rið Þ: ð3Þ

It is immediate that the test statistics R1,…, Rk are independent, because the joint distribution factorises into the product
of the marginal distributions. This independence will greatly simplify the computation of critical values. Theorems 1
and 2 follow from a generalisation of Renyi's exponential representation (see Renyi, 1970, chap. VIII, Section 9 or
Beirlant et al., 2004, p.110) which states that Zj≡ j (log Xj,n− log Xj+ 1,n) with j=1,…, k are asymptotically iid with the
same exponential distribution.4 We are now in a position to propose the outlier identification procedure.

3. Outlier identification

A test for a single outlier is a test of H0,1. The test procedure is immediate: in a test of size δ reject H0,1 if the
realisation of R1 exceeds the critical level δ−1/α.

The presence of more than one outlier can mask their presence. Three outliers, for instance, could result in R1 and R2

being small but R3 being large. This suggests the following outward testing procedure:

Proposition 3. (Outward testing for multiple outlier identification) Start at testing H0,k using Rk, i.e. the hypothesis
that the kth largest order statistic belongs to the population of interest. If H0,k is not rejected, test the next null
hypothesis H0,k− 1 using Rk− 1. This outward testing continues until the first outlier is detected or the sample maximum
has been tested. For the overall test to have size δ, the individual critical levels can be set to

ri ¼ 1$ 1$ dð Þ1=k
h i$1= aið Þ

: ð4Þ

We discuss the estimation of the nuisance parameter α below. The choice of the critical levels to achieve the overall
test to have size δ is justified as follows. The size of a joint test of H0,k,…, H0,1 for critical levels (r1,…, rk) is

Pr rejectH0;k [ N [H0;1
# $

¼ 1$ FR1; N ;Rk r1; N rkð Þ ¼ 1$ j
k

i¼1
FRi rið Þ:

Setting the individual FRi(ri)= (1−δ)1 / k, it follows by independence that 1−∏i= 1
k (1−δ)1 / k=1− (1−δ)=δ. Also FRi

(ri)=1− ri− αi, hence 1− ri− αi=(1−δ)1 / k and the result (4) follows.

4 We are grateful to a referee for pointing out this result. For an alternative direct proof see the web Appendix.
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We proceed to discuss some theoretical properties of the test of Proposition 3. Below we examine its actual
performance in a simulation study. Obviously, the test has size δ. To measure the performance of the test we consider
next its conditional power, i.e. “the probability that the test is significant given that the contaminant is the extreme value
tested” (Hawkins, 1980). The alternative ‘not H0,1' is thus ‘the maximum z is an outlier’. Note that we are thus
considering a general alternative hypothesis. An alternative approach is derive the power under specific alternatives as
e.g. in Pagurova (1996), who considers for distributions F((x−θ1i) /θ2) with i=1,…,n the null hypotheses θ1i=θ for all
i, against the specific alternative θiNθ for some i.

The conditional power of the test for a single outlier at level δ is

p1 zð Þ ¼ Pr R1Nr1jnot H0;1; z is an outlier
# $

¼
Pr z=X2;nNr1

# $

Pr X2;nbz
# $

¼ exp can$1z
$a 1$ d$1% &# $

ð5Þ

with fixed z and cn− 1=F
−1(1− (n−1)−1) and r1 as defined in Eq. (4). We utilized the fact that the normalised

maximum of heavy tailed distributions converges in distribution to the Frechet distribution. Note that X2,n is the
maximum of the population of interest when z is an outlier.

The conditional power of the multiple outlier test is the probability that the outward testing procedure starting with
H0,k detects outliers, given that the m largest values (1≤m≤k) are contaminants. We assume for simplicity that the
contaminating m outliers are all equal to z, so that their ratios Rj=1b rj for j=1,…,m−1 by construction (hence the test
will not indicate the presence of outliers within the group of outliers). The conditional power is

pk;m zð Þ ¼ Pr R1Nr1 or N or RkNrk jthere are m outliers zf g

¼ 1$ Pr 1VRmVrm; N ;RkVrkf g
Pr Xmþ1;nbz

# $ :
ð6Þ

The probability in the denominator can be calculated using the fact that Xm+ 1,n, being the maximum of the
population of interest, follows a Frechet law. The probability in the numerator is (see the Appendix for the derivation)

P 1VRmVr1; N ;RkVrkð Þ

¼ c k$mþ1ð Þa
n

Xk$m

n¼0

X

i1; N ;inf g
$1ð Þnr$ i1$mð Þa

i1
: : :r$ in$mð Þa

in ( exp $z$acanr
a
i1
: : :rain

' (
$exp $z$acanr

a
i1
: : :rain r

a
1

' (h ih i
;

ð7Þ
where the inner sum runs over all n-combinations {i1,…, in} out of the set {m+1,…, k}.

For sufficiently large outliers, the conditional power π approaches 1, and these outliers are detected with proba-
bility one. The test is thus consistent as z→∞. This is the appropriate notion of consistency in the current context since
cn=O(n

1 /α) but the conditioning event must be guaranteed to hold. This condition would not be met if z were fixed and
n→∞ (as in the standard definition of consistency) since the extreme quantile of the heavy-tailed F then grows without
bound.

The implementation of the test requires an estimate of the unknown nuisance parameter α. For distributions
satisfying Eq. (1) the most popular estimator in the literature is the Hill (1975) estimator

â jð Þ ¼ 1
j

Xj

i¼1

ln Xi;n $ ln Xjþ1;n

" #$1

ð8Þ

where κ is the number of extremes to be included for estimation.
The estimator (8) is well behaved, e.g. has an asymptotic normal distribution (Embrechts et al., 1997). However, the

estimator requires choosing the threshold κ, i.e. determining where the tail of the distribution begins. It is well known
that κ gives rise to a mean-variance trade-off. In particular, for the distributions which satisfy L0(x)=g1[1+g2x

−ρ+O
(x−2ρ)] with ρN0 and g1N0, Hall (1982) has shown that the asymptotic bias of the Hill estimator is g2g1

−ρ /α (κ /n)ρ /ααρ /
(α+ρ), whereas the asymptotic variance is α2 /κ.

704 C. Schluter, M. Trede / Journal of Empirical Finance 15 (2008) 700–713



Author's personal copy

We apply a procedure proposed by Huisman et al. (2001) in order to resolve the mean-variance trade-off. The
procedure is as follows. The asymptotic bias is exactly linear in κ for α=ρ or approximately linear for sufficiently
small κ. This suggests writing α̂(κ)=β0+β1κ+ε(κ) with κ=1,…, N for some threshold N which we set to N=0.1n.
The error term ε(κ) is heteroscedastic since the asymptotic variance is not constant for different κ. This is a weighted
least squares (WLS) problem, and the regression constant β0 is an unbiased estimator for α. The WLS-estimator thus
obtained is, of course, a weighted sum of the Hill-type estimators α̂(κ), κ=1,…, N.

We need to adapt the Hill estimator to our setting. In particular, the Hill estimator is consistent for extremes (i.e.
under H0,1), but not in the presence of outliers. In order to test H0,k it is therefore advisable to exclude the k extreme
order statistics. An estimator excluding the potential outliers is the modified Hill-type estimator

ba$k jð Þ ¼ k
j$ k þ 1

ln Xkþ1;n $
j

j$ k þ 1
ln Xjþ1;n þ

1
j$ k þ 1

Xj

i¼kþ1

ln Xi;n

" #$1

: ð9Þ

For k=0 we arrive at the usual Hill estimator α̂(κ). The modified Hill-type estimator (9) turns out to inherit the nice
properties which the Hill estimator has under H0,1, such as the asymptotic normality. Lemma 4 in the Appendix makes
this more precise.

We apply the Huisman et al. (2001) procedure to the modified Hill estimator in all cases but one. It is well known
that for stable distributions, the Hill estimator substantially overestimates the tail index (McCulloch, 1997). A robust
(because quantile-based) maximum likelihood estimator is proposed byMcCulloch (1986). A preliminary data analysis
using diagnostics proposed by Nolan (1997) should typically help in determining whether the sample is reasonably
well described by a stable distribution.

We also note that there are more sophisticated methods to robustly estimate the tail parameter (Brazauskas and
Serfling, 2000; Peng andWelsh, 2001; Vandewalle et al., 2004; Vandewalle et al., 2007). However, in the framework of
this paper the tail index is just a nuisance parameter, and consistency is all that is required. In order to keep the test
procedure as simple to implement as possible we prefer (9) as an estimator.

4. Simulation evidence

We proceed to examine the performance of the outlier tests in several simulations. In particular, we take a close look
at the empirical size in small samples of the single and multiple outlier test procedures. If the empirical size deviates
substantially from the nominal size our test would be uninformative. The sample sizes we consider are in the range
usually available in finance.

The data are generated by four heavy-tailed distributions, and we have chosen tail indices reported in the finance
literature.

1. Student's t-distribution with 3 degrees of freedom.
2. Stable distribution with characteristic exponent α=1.5.
3. Pareto distribution with tail index α=3.
4. Burr XII or Singh-Maddala distribution with density

f x; a; b; cð Þ ¼ abcxb$1

1þ axbð Þcþ1 ;

a member of the generalised beta distributions (McDonald, 1984). This distribution is frequently used not to model
return distributions but rather to model income or wealth distributions (Singh and Maddala, 1976), and the
parametrisation f (.; 100, 2.8, 1.7) fits real world income data well up to scale (Brachmann et al., 1996). The tail
index is α=bc=4.76.

Random numbers were generated by the inversion method, except for the stable distribution where we used the
stable random number generator proposed by Chambers, Mallows, and Stuck (1976), see also Weron (1996). In all
experiments, we generated 100,000 random samples. When considering actual test sizes, we have used a nominal value
of δ=0.05.
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The first simulation study investigates the error probability of the first kind of the single outlier test. In each iteration
we generate a sample of size n from the distribution under consideration. As we are concerned with the error
probability of the first kind, no outliers are inserted into the sample. The tail index α is estimated using the methods of
Section 3. In this setting, if the realisation of test statistic R1 is larger than the critical level r1=δ

−1 / α̂ − 1 we
(incorrectly) reject the null hypothesis. The proportion of rejections of H0,1 for the nominal size δ=0.05 is reported in
Table 1 for various sample sizes n. We conclude that the empirical size is mostly close to the nominal size, even for
small samples. Only if the sample size gets as small as nb1500 the proportion of wrong rejections increases above the
nominal size, especially for the t-distribution and (to a lesser extent) for the Singh-Maddala distribution. For sample
sizes of n≥1500 the test keeps its nominal size virtually exactly for the stable distribution and the Pareto distribution, it
is slightly conservative for the t-distribution and the Singh-Maddala distribution.

We turn to the test for multiple outliers, and investigate the error probability of the first kind. The sample size is set to
n=2000, and the nominal significance level is δ=0.05. We consider the actual size of the multiple test as a function of
the number of potential outliers k=1,…, 10. As before, the sample does in fact not contain any outliers. For kN1 we test
the multiple null hypotheses H0,i for i=k,…, 1 by computing the test statistics Ri =Xi,n /Xi+1,n and the tail index
estimatesbα− i . Following Section 3, the null hypothesis H0,i is rejected if the realisation of Ri is larger than the critical
level (4). If any one ofH0,k toH0,1 is rejected the overall null hypothesis of no outliers is (wrongly) rejected. In practice
the test procedure is sequential, starting with i=k and decrementing i until rejection or i=1.

The results, given in Table 2, reveal that nominal and actual size for all distributions are in close agreement. The
empirical size tends to decrease slightly with increasing k (and constant n), making the test more conservative. An
exception is the Student's t-distribution where the empirical size is greater than the nominal size. The discrepancy is,
however, small and may be neglected in applications.

Table 1
Simulated empirical size of the single outlier test for various sample sizes

Student's t Stable Pareto Singh-Maddala

n α=3 α=1.5 α=3 α=4.76

100 0.242 0.044 0.071 0.104
500 0.076 0.049 0.051 0.048
1000 0.066 0.049 0.051 0.046
1500 0.064 0.049 0.049 0.045
2000 0.061 0.051 0.050 0.046
2500 0.059 0.051 0.050 0.045
5000 0.060 0.049 0.051 0.044
7500 0.060 0.050 0.051 0.043
10000 0.058 0.050 0.050 0.044

Table 2
Simulated empirical size of the multiple outlier test for various numbers of potential outliers k and constant sample size n=2000

Student's t Stable Pareto Singh-Maddala

k α=3 α=1.5 α=3 α=4.76

1 0.063 0.050 0.051 0.045
2 0.064 0.050 0.050 0.043
3 0.065 0.049 0.049 0.041
4 0.069 0.049 0.049 0.041
5 0.071 0.049 0.048 0.041
6 0.070 0.049 0.048 0.041
7 0.070 0.048 0.047 0.041
8 0.072 0.047 0.047 0.041
9 0.073 0.047 0.046 0.040
10 0.074 0.047 0.045 0.040
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In summary, we find that the test procedures are not only valid asymptotically, but also in finite samples.
The same qualitative results are obtained concerning the power of the tests. We ran the same simulations (n=2000,

δ=0.05) with a single outlier z (or m multiple outliers) inserted into the data. Fig. 1 displays the power of the single
outlier test for the four distributions. The dotted line shows the power as calculated by Eq. (5) with the true tail index α
assumed to be known.

The solid line gives the simulated power when the tail index is estimated by Eq. (9) with k=1. In general, the
simulated small sample power is close to π1(z). Taking the sampling error of α into account we find that π1(z) slightly
understates the power for smaller outliers and overstates the power for larger outliers, the reason being that α̂−1 is a
biased estimator of α under the alternative hypothesis. In the presence of an outlier X2,n is the maximum of the
population of interest while the estimator assumes X2,n to be the second-largest value. An exception is the stable
distribution where the tail index is estimated by a quantile based estimator.

Fig. 2 shows the power in the presence of multiple outliers. We set the number of outliers to m=3 and apply the
outward testing procedure starting with k=5. For clarity we assume that all m=3 outliers are equal to z. The dotted
lines give the power πk,m(z) as a function of z (setting the tail index α to its true value). The solid lines show the
simulated power when the tail index is estimated by α̂− k. The results are similar to the single outlier case. The bias of
the tail index estimator α̂− k under the alternative induces the power to be somewhat smaller than in the case where the
true tail index is known. Again, the stable distribution is an exception because of its quantile based estimator.
Comparing the single outlier test with the outward testing procedure in the presence of multiple outliers we find that the
chances of detecting multiple outliers are larger in the latter case.

Fig. 1. Conditional power of the single outlier test as a function of the value z of the outlier.
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5. Application to market crashes

We now apply the test to answer the question: Was the 1987 stock market crash (Black Monday) a structurally
unusual event, i.e. an outlier? There is no consensus on this issue in the literature. McNeil (1998) concludes that the
magnitude of the market crash could have been predicted using extreme value theory. However, his analysis is based on
the worst daily loss in each year from 1960 until Black Monday, resulting in just 28 observations and hence prone to
large sampling error. In contrast, Matthys and Beirlant (2001) use a bias-corrected estimator of the tail index and find
that the market crash is unlikely to belong to the same return distribution as the rest of the observations. In a more recent
paper, Novak and Beirlant (2006) estimate the tail index of the S&P500 to be α̂=3.88 implying that the market crash
might in fact belong to the usual return distribution.

The data set consists of daily log-returns X1,…, Xn of the Dow Jones Industrial Index from 3 January 1977 to 31
January 2005. The number of returns is n=7326. The mean and standard deviation of daily returns are x̄ =0.032 and
s=1.03. The crash occurred on 19 October 1987 with a loss of 25.63% (in log-returns) on a single day. The second
largest loss is much smaller (in absolute value): 8.38%, occurring one week after Black Monday. Fig. 3 depicts the
logarithm of the Dow Jones Industrial Average from 1977 until 2005. The Black Monday crash is obviously the most
extreme event during the observation period. Since tails of return distributions are known to be heavy, rather than thin,
tailed it is not surprising to find returns that are (very) large in absolute value. It is evidently a very important question
whether extreme events such as the 1987 crash are to be interpreted as large losses within the usual return distribution
or rather as outliers not belonging to it. If a heavy tailed distribution fitted to the returns does not assign enough
probability to crashes such as the Black Monday, any attempt to successfully manage portfolio risks is bound to fail.

Fig. 2. Conditional power of the multiple outlier test as a function of the value z of the m=3 multiple outliers.
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The distribution theory for our test is based on the assumption that the underlying data are iid. Yet, it is well known
that financial data such as the Dow Jones Industrial Index are dependent. In order to be able to apply our test, we
therefore need to pre-whiten the returns first. To this end we followMcNeil and Frey (2000) and estimate a standard AR
(1)-GARCH(1,1) model

Xt ¼ ct þ rtet
ct ¼ cþ / Xt$1 $ cð Þ
r2t ¼ a0 þ a1e2t$1 þ b1r

2
t$1:

by pseudolikelihood.5 The fitted standardized residuals are ε̂t = (Xt− µ̂t) / σ̂t, and depicted in Fig. 4. Next, we apply a
battery of tests (Ljung-Box tests on the residuals and the squared residuals) to verify that these residuals are
approximately independent. Hence we proceed to apply our test procedure to the residuals (i.e. the pre-whitened
returns).6 Since we do not make any symmetry assumption about the innovations we concentrate on the loss
distribution and test whether there are outliers in the upper tail of the negative standardized residuals. Fig. 4 suggests
that there might be two outliers, the first dated by the market crash, the second dated 13 October 1989. Hence we test
for two and one outlier (k=2).

Fig. 3. Logarithm of the Dow Jones Industrial Average.

5 For the purpose of estimation the innovations are assumed to be normally distributed. The point estimates are µ̂=0.0452, ϕ̂=0.0338,
α̂0=0.0143, α̂1=0.0680, β̂1=0.9200.
6 We have verified the robustness of the pre-whitening approach against misspecifications by a simulation study, based on a misspecified

stochastic volatility model. The details, not reported here for the sake of brevity, can be obtained from the authors.
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The results are as follows: The ratio of the second and third largest pre-whitened negative return is 1.490. Our
estimate of the tail index of the negative returns excluding the two potential outliers isbα−2=4.152 where we have set
N=n / 10=732.7 According to Eq. (4) the critical value for a test of size δ=0.05 is

r2 ¼ 1$ 1$ 0:05ð Þ1=2
h i$1= 2)4:152ð Þ

¼ 1:557

which is larger than the test statistic. We conclude that the second largest pre-whitened loss is not an outlier. Next, we
proceed to consider Black Monday. The ratio of the largest and second largest pre-whitened return is 1.176 and the re-
estimated tail index bα−1=4.078 leading to a critical value of r1= (1− (1−0.05)1 / 2)−1/4.078 =2.463 for a test of size
δ=0.05 — again we conclude that the pre-whitened negative return of Black Monday is not an outlier.8

6. Conclusions

We have proposed a new testing procedure to identify multiple outliers, defined as large contaminations, in heavy-
tailed distributions. The masking problem stemming from the presence of multiple outliers is solved by outward
testing. Our test statistics are ratios of order statistics, and we have derived their asymptotic joint and marginal
distributions. These outlier test statistics are shown to be independent, and therefore make the test simple to implement.
The good performance of the test is demonstrated in several simulation studies. A substantive empirical contribution is
the application of our test to Dow Jones Industrial Average return data and we find that the Black Monday market crash
in October 1987 was not a structurally unusual event if the intertemporal dependence of the returns is taken into
account.

Fig. 4. Standardized residuals (pre-whitened returns).

7 These results are consistent with McNeil and Frey (2000) using S&P500 data.
8 The p-value of the joint test is 0.071.
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Appendix A

A. Proofs

Proof of Theorems 1 and 2. Assume that Eq. (1) holds. The generalised Renyi result is that

Zjuj log Xj;n $ log Xjþ1;n
! " df a$1 þ b

nþ 1
jþ 1

) *) *
Ej

with j=1,…, k where Ej are iid standard exponential random variables and b is a regularly varying function with some
index −βb0 (see Beirlant et al., 2004, p.110). Theorems 1 and 2 are now immediate.

Derivation of the joint probability (7): For simplicity we assume that there is just one single outlier (m=1) and the
outward testing procedure starts at the kth ratio of order statistics. The value of the outlier is z. Consider the
transformation

T x1; N ; xkð Þ ¼ z
x1

;
x1
x2

; N ;
xk$1

xk

) *

with inverse

T$1 r1; r2; N ; rkð Þ ¼ z
r1
;

z
r1r2

; N ;
z

r1r2: : :rk

) *
:

The Jacobian is

∂T$1

∂r
¼

$ z
r21

0 N N 0

$ z
r21r2

$ z
r1r22

0 N 0

v v . .
. . .

.
v

v v N $ z
r1r2: : :r2k$1

0

$ z
r21r2: : :rk

$ z
r1r22: : :rk

N N $ z
r1r2: : :r2k

2

666666666664

3

777777777775

:

Since all entries above the diagonal disappear the determinant is

jdet ∂T$1

∂r

) *
j ¼ j

k

i¼1

z
r1: : :r2i

¼ zkr$ kþ1ð Þ
1 r$k

2 r$ k$1ð Þ
3

: : :r$2
k :

The asymptotic joint density of the first k order statistics is (Embrechts et al., 1997, p. 201)

u a x1; N ; xkð Þ ¼ ak exp $ xkc$1
n

! "$a! "
j
k

j¼1
xjc$1

n

! "$a$1

with cn=F
−1(1−n−1). Hence, the joint density of the ratios (R1, R2,…, Rk)= (z /X1,n, X1,n /X2,n,…, Xk− 1,n /Xk,n) is

gR1; N ;Rk r1; N rkð Þ ¼ u a
z
r1
;

z
r1r2

; N ;
z

r1r2: : :rk

) *
jdet ∂T$1

∂r

) *
j

¼ c$k
n ak exp $ z

cnr1r2: : :rk

) *$a) *
z

cnr1

) *$a$1 z
cnr1r2

) *$a$1

( : N :
z

cnr1r2: : :rk

) *$a$1

zkr$ kþ1ð Þ
1 r$k

2 r$ $k$1ð Þ
3

: : :r$2
k

¼ akckan z$ka exp $z$acanr
a
1r

a
2
: : :rak

! "
) rka$1

1 r k$1ð Þa$1
2 N ::ra$1

k :
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The required joint probability is

P 1VR1Vr1;R2Vr2; N ;RkVrkð Þ ¼
Z r1

1
N
Z rk1

1
gR1 ; N ;Rk x1; N ; xkð Þdxk N dx1

¼ akckan z$ka
Z r1

1
xka$1
1

Z r2

1
x k$1ð Þa$1
2 N

Z rk

1
xa$1
k ( exp $z$acanx

a
1x

a
2
: : :xak

! "
dxk N dx2dx1

¼ ckan
Xk$m

n¼0

X

i1; N ;inf g
$1ð Þnr$ i1$1ð Þa

i1
: : :r$ in$1ð Þa

in ( exp $z$acanr
a
i1
: : :rain

' (
$ exp $z$acanr

a
i1
: : :rain r

a
1

' (h in o

where the inner sum runs over all n-combinations {i1,…, in} of the set {2,…, k}. If mN1 the indices are simply shifted.

Lemma 4. (Properties of the modified Hill estimator) Under Assumption (1) and the null hypothesis H0,k the modified
estimator has the following desirable properties:

(i) The estimator (9) is the maximum likelihood estimator of α of a Pareto distribution if the k largest observations
are not included.

(ii) As n → ∞ the estimators (8) and (9) converge almost surely: â$ba$k
! "

Ya:s: 0.
(iii) The estimator (9) is consistent for α: if κ→∞, κ / n→0, as n→∞ thenba$k Y

p
a.

(iv) If κ/n→0, κ/ln ln n→∞, as n→∞ thenba$k Y
a:s:

a.
(v) The estimator (9) is asymptotically normally distributed. Assume limx→∞ [F̄ (tx) / F̄ (x)− t−α] /γ(x)=

t−α[t−ρ−1] / (−ρ), tN0 exists where γ(x) is a measurable function of constant sign. −ρ is the “second order
parameter of regular variation”. Let U (t)=F −1(1− t−1), and A(x)=α−2γ(U(x)) and κ→∞ but κ / n→0. If
limn→∞

ffiffiffi
j

p
A(n /κ)=λ ∈ ℝ then, as n→∞, the estimator bα− k is consistent and asymptotically normal withffiffiffi

j
p ba$k $ a

! "
Yd N ka3= $q$ að Þ; a2ð Þ.

Proof of Lemma 4. (i) The joint density of Xj,n,…, Xκ,n with κ≤n is

fxj;n; N ; xj;n xj; N ; xk
! "

¼ n!
n$ jð Þ! j$ 1ð Þ!F

n$j xjð Þ
P
F

j$1
xj
! "

j
j

i¼j
f xið Þ

for xj≥…≥xκ (David, 1981, p. 10). The proof then simply follows the usual derivation for the Hill estimator (see e.g.
Embrechts et al., 1997). One immediately obtainsbα− k (κ). (ii) is immediate. (iii)–(v) This theorem has been proved for
the usual Hill estimator α̂, but by (ii) also apply tobα− k. See, for instance Embrechts, Kluppelberg, and Mikosch (1997,
chap. 6.4). Lemma 4(iii) is due to de Haan and Peng (1999). Another version is given in Haeusler and Teugels (1985).
See also Weissman (1978). Asymptotic normality in the submodel with L0(x)=g1[1+g2x

−ρ+O(x−2ρ] is also shown by
Hall (1982). □

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.
jempfin.2007.10.003.
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