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The approximate effects of measurement error on a variety of measures of inequality and poverty
are derived. They are shown to depend on the measurement error variance and functionals of the error-
contaminated income distribution, but not on the form of the measurement error distribution, and to
be accurate within a rich class of error-free income distributions and measurement error distributions.
The functionals of the error-contaminated income distribution that approximate the measurement error
induced distortions can be estimated. So it is possible to investigate the sensitivity of welfare measures
to alternative amounts of measurement error and, when an estimate of the measurement error variance
is available, to calculate corrected welfare measures. The methods are illustrated in an application using
Indonesian household expenditure data.

1. INTRODUCTION

Most of the attention paid to statistical aspects of inequality and poverty measurement has
focussed on properties of the sampling distributions of inequality statistics (see Davidson and
Duclos, 1997), regarding the data employed to calculate the statistics as error-free observations.1

Of course data are rarely, if ever, error free. The tension between the desire for large samples and
accurate measurement always results in measurement error being present.

Measurement of income inequality and poverty is essentially measurement of variability.
When measurement error is not strongly negatively correlated with income, recorded income is
more variable than actual income causing calculated inequality measures to tend to overstate true
inequality. Improvements in the quality of survey instruments reduce measurement error and can
lead to apparent reductions in inequality when true inequality may be unchanged or increased.
Comparisons across groups of the population, for example urban and rural dwellers, are affected
by differences in the extent of measurement error within groups. The result is that measurement
error can cause targeted redistributional policies to be aimed incorrectly and can lead to false
conclusions concerning the impact of poverty alleviating measures. Measurement error affects
some inequality measures more than others and the effect of measurement error depends upon
the distribution of true income. This paper investigates the differential effect of measurement
error on a variety of inequality measures. It studies the relationship between, on the one hand,

1. There are a few exceptions. Cowell and Victoria-Feser (1996) examine the statistical robustness tooutliers
of a variety of inequality indices. Analysis of measurement error effects using fully parametric approaches and specific
income and measurement error distributions are set out in Israelsenet al. (1984) and van Praaget al. (1983). See also
Ravallion (1994).
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the impact of measurement error on inequality and poverty measures and on the other, the form
of the underlying structural income distribution.

To obtain the precise effects of measurement error on inequality measures requires a
complete specification of the joint distribution of income and measurement error and exact results
require a case-by-case approach from which it is difficult to draw general conclusions. This paper
addresses this problem by considering the approximate effects of measurement error. These are
shown to depend upon particular features of the true income distribution, the features that are
relevant being determined by the inequality measure under consideration. The only feature of
the measurement error distribution appearing in the approximation is its variance, measured
in an appropriate metric. The approximate impact of measurement error can be estimated for
any candidate value of the measurement error variance using only error-contaminated income
data. This allows investigation of the sensitivity of computed inequality and poverty measures to
measurement error.

Although this paper focuses on the effect ofmeasurement erroron welfare measurement, its
results can be applied to other problems with a similar structure. For example, income reported
over a fixed period and “permanent” income may be related to one another in the same way
as the error-contaminated and error-free income discussed in this paper. For such cases the
results of this paper shed light on the relationship between welfare measures calculated using
survey records of income over reporting periods of different lengths and welfare measures
calculated using “permanent” income. Of course, real short run variation in income may have
substantive welfare implications, unlike the spurious measurement error which motivates this
paper. Although the exposition is cast in terms of household or personal income, the results given
here apply when household expenditures are the basis for calculating welfare measures, and they
apply in other similar situations, for example in the measurement of industrial concentration or
of inequality in the distribution of time spent unemployed.

We consider welfare measures, specifically income inequality measures and poverty indices,
which can be expressed as a functional,W(FY), of the distribution function,FY, of income,Y.
With error-free income denoted byX and error-contaminated income denoted byZ, we study
the relationship betweenW(FZ) andW(FX) and show that the error-contaminated measure,
W(FZ), is approximately equal to

W A(FX, σ 2) =W(FX) + σ 2W∗(FX),

whereW∗ is a functional specific to each welfare measure and independent of the measurement
error distribution, andσ 2 is the variance of measurement error expressed in an appropriate metric.
We derive the form ofW∗ for a rich class of welfare measures.

In the approximation,W A(FX, σ 2), the termW∗(FX) can be replaced byW∗(FZ) without
disturbing the order of the approximation error. Survey data regarded as realizations ofZ can
be used to produce estimates,W(F̂Z) andW∗(F̂Z), leading to measurement error corrected
estimates of welfare measures,W(F̂Z) − σ̂ 2W∗(F̂Z) whereσ̂ 2 is either an extraneous estimate
of the measurement error variance, or, in a sensitivity analysis, a candidate value from a plausible
range of values.

Many welfare measures and all those considered here, can be expressed in terms of the
particular functional

W(FY) = L(a, N(y, a); FY) =

∫ a

0
N(y, a)d FY(y), (1)

for some function of incomeN(y, a) and limit of integrationa. Table 1 shows the measures
examined in this paper, defined in terms ofL. A comprehensive survey of the literature on
inequality and poverty measurement is given in, respectively, Cowell (2000) and Seidl (1988).



CHESHER & SCHLUTER MEASUREMENT ERROR 359

TABLE 1

Welfare Measures: notation and definition

Name Notation Definition

Generalized entropy indexGE IY(α)
1

α2 − α

[
L(∞, yα

; FY)

[L(∞, y; FY)]α
− 1

]
, α /∈ {0, 1}

Generalized Lorenz curve8Y(p) L(QY(p), y; FY)

ordinates
Lorenz curve ordinate 9Y(p) [L(∞, y; FY)]−1L(QY(p), y; FY)

Gini coefficient GCY 1 − 2
∫ 1

0
[L(∞, y; FY)]−1L(QY(p), y; FY)dp

FGT class of poverty
indices

PY(θ, c) L(c,

(
c − y

c

)θ

; FY), θ ≥ 0

The mean,E[Y], and p-quantile,QY(p), which appear as components of some of these
measures are, in terms of the functionalL, as follows:

E(Y) = L(∞, y; FY),

p = L(QY(p), 1; FY),

the p-quantile being implicitly defined by the second of these equations.
Table 2 shows the approximation,W A(FX, σ 2), for each error-contaminated welfare

measure,W(FZ), that we consider. In each case functionals ofFX can be replaced by the same
functionals ofFZ without changing the order of the approximation error, and these are readily
estimated. For example, the difference between the error-contaminated and error-free poverty gap

index is σ2

2 c fX(c) '
σ2

2 c fZ(c) which can be estimated for any potential value ofσ 2 plugging

in a nonparametric estimate,̂fZ , of the density of error-contaminated income, evaluated at the
chosen poverty line,c.

The remainder of the paper is organized as follows. Section 2 develops the approximation to
the functionalL and section 3 applies the approximation to the welfare measures listed in Table 1.
Section 4 examines the quality of the approximations comparing them with exact calculations for
some specific cases. We find that the approximations are remarkably accurate for a wide range
of true income distributions and measurement error distributions even when there is moderate
measurement error. Section 5 proposes methods for estimating the functionals appearing in
the approximations. A small Monte Carlo experiment suggests that accurate estimation is
possible in samples of the size typically found in practical welfare measurement. Section 6
demonstrates the use of the approximations in an illustrative sensitivity analysis of regional
inequality measurement using Indonesian household survey data from 1993. Section 7 concludes.

2. THE APPROXIMATE EFFECT OF MEASUREMENT ERROR

2.1. Introduction

Calculated welfare measures are statistics which, under suitable conditions (see for example
Davidson and Duclos, 1997), are consistent estimators of the same welfare measures computed
as functionals of the distribution generating the income survey data. When income data are
contaminated by measurement error the distribution from which data are generated differs from
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TABLE 2

Approximate error-contaminated welfare measures

Welfare measureW(FZ) Approximation:W A(FX, σ 2) W A(FX, σ 2) TW(FX)

Generalized
entropy index

GE IZ(α) GE IX(α)

(
1 +

σ 2

2
α(α − 1)

)
+

σ 2

2
≥

Lorenz curve
ordinate

9Z(p) 9X(p) −
σ 2

2
E(X)−1Q2

X(p) fX(QX(p)) ≤

Gini coefficient GCZ GCX + σ 2E(X)−1E(X2 fX(X)) ≥

Headcount
index

PZ(0, c) PX(0, c) +
σ 2

2
c fX(c)(η fX (c) + 2) T

Poverty gap PZ(1, c) PX(1, c) +
σ 2

2
c fX(c) ≥

FGT index with
θ > 2

PZ(θ, c) PX(θ, c) +
σ 2

2
θ(θ − 1)×

[PX(θ, c) − 2PX(θ − 1, c) + PX(θ − 2, c)]
≥

Note: η fX (c) = ∇logx log fX(x)|x=c.

the distribution about which we would like to make inferences. So, to understand the way in
which measurement error affects views of inequality and poverty gained from welfare measure
statistics, the first step is to understand the way in which welfare measure functionals of error-
free income distributions differ from the same welfare measure functionals applied to error-
contaminated distributions. For most welfare measures this difference depends upon detailed
features of the error-free-income distribution and the measurement error process and a case by
case analysis is required if the impact of measurement error is to be fully understood. Here we
derive approximations to the effect of measurement error which only depend on the measurement
error variance (in an appropriate metric) and a welfare-measure-specific functional of error
contaminated income.

The methods we employ allow use of a quite general class of measurement error
models which includes additive and multiplicative models.2 However, in this paper we
consider the simplest form of measurement error that could reasonably be posited for
contamination of income data, namely multiplicative measurement error distributed continuously
and independently of error-free (“true”) income. Multiplicative measurement error is a leading
case of interest because income is non-negative (at least in the long run). Multiplicative
measurement error can also arise when income data are measured relative to an equivalence
scale which is itself measured inaccurately.3 An attractive consequence of the assumption
of independence of multiplicative measurement error and true income is the dependence it
implies between deviations of error-contaminated from error-free income (Z − X) and true
income (X), larger deviations tending to be associated with larger true income, in the sense
that E[Z − X|X] = λX for someλ > 0, which is the sort of dependence one would expect to
arise in practice.

2. The Generalised Additive Measurement Error model has for, monotonicρ(·), ρ(Z) = ρ(X) + σρ(U ) and
includes simple additive (ρ(x) = x) and multiplicative (ρ(x) = logx) measurement error models as special cases.
Chesher and Schluter (1999) develop the approximations of this paper for this model.

3. We are grateful to Martin Browning for drawing this to our attention.
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The relationship between error-free income and multiplicative measurement error-
contaminated income is specified as follows:

Z = XV, (2)

V = e−σ2/2Uσ . (3)

Hereσ ≥ 0 measures the extent of measurement error withZ = X whenσ = 0. The variate
U > 0 has distribution function denoted byFU (u), normalized so that logU has mean zero
and variance one. The scale factor exp(−σ 2/2) ensures that error-contaminated income (Z) and
error-free income (X) have the same mean to order4 O(σ 2) as will be shown in section 2.2.
Throughout it is assumed thatX andU are continuously distributed.

The distribution function,FZ , of error-contaminated income is a functional ofFX andFU

and depends onσ . For some welfare measures, for example the variance of log income, the error-
contaminated welfare measureW(FZ), and thereforeW(FZ) −W(FX) is determined entirely
by FX andσ . This is unusual, and in most cases the difference in welfare measures for error-free
and error-contaminated income depends upon all aspects of the measurement error distribution
FU .

To get insight into the impact of measurement error without being specific about the exact
distribution of measurement error we consider approximations to error-contaminated welfare
measures, obtained as second-order Taylor series expansions ofW(FZ) in powers ofσ around
σ = 0. The approximations take the form

W(FZ) =W(FX) + σ 2W∗(FX) + o(σ 2), (4)

where limσ→o o(σ 2)/σ 2
= 0 andW∗(·) is a functional determined entirely byW(·) and

independent of the measurement error distribution. There are three points of interest here.

1. The O(σ 2) term is determinedentirely by σ 2, the error-free income distribution and the
form of the welfare measure. The normalized measurement error distributionFU plays no
role except through its variance. Comparison of this term across measures and distributions
will show which measures are potentially sensitive to measurement error and for what types
of income distribution this sensitivity is high and low.

2. Since FX and FZ differ by O(σ 2) it follows that σ 2W∗(FX) andσ 2W∗(FZ) differ by
o(σ 2) so that the latter can replace the former in (4) without disturbing the order of the
approximation error. This leads to the following, alternative, approximation which has
important practical implications:

W(FZ) =W(FX) + σ 2W∗(FZ) + o(σ 2). (5)

3. Error-contaminated data, that is, realizations ofZ, allow estimation ofFZ , and so, of
W∗(FZ). This leads to new tools for improved welfare measurement and comparison in
real world policy analysis in which measurement error is a non-ignorable, ever-present
feature.

(a) With an estimateW∗(F̂Z), the sensitivity of welfare measurements to alternative
amounts (σ 2) of measurement error can be assessed. One may find that, for the chosen
welfare measure and error-contaminated distribution,W∗(F̂Z) is small enough to be
ignored for plausible amounts of measurement error.

(b) It is possible to calculate an approximately corrected welfare measure usinĝW(FX) =

W(F̂Z) − σ̂ 2W∗(F̂Z), where σ̂ 2 is an extraneous estimate,σ̂ 2, or for σ̂ 2 passing
through a range of plausible values.

4. In the sense thatE[Z] − E[X] = o(σ2) where limσ→0 o(σ2)/σ2
= 0.
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(c) Estimates,Ŵ(FX), under different amounts of measurement error can be compared
across groups over which there might be expected to be different amounts of
measurement error, for example rural and urban households. One would be concerned
for the appropriateness of policy targeting if rankings of groups were sensitive to
plausible variations across groups in the amount of measurement error.

We now develop the tools required to obtain the approximations to the welfare measure
functionals, first considering the relationship between error-free and error-contaminated income
distributions.

2.2. Approximate density functions under multiplicative measurement error

Chesher (1991) shows that in the additive measurement error model

R = S+ σ V, (6)

whereV is continuously distributed independently ofS with mean zero and variance one, the
density ofR is

fR(r ) ' fS(r ) +
σ 2

2
f ′′

S(r ), (7)

where “'” indicates a difference between left- and right-hand sides that iso(σ 2) where
limσ→0 o(σ 2)/σ 2

= 0.
The result follows directly from a second-order Taylor series expansion of the marginal

density of error-contaminatedR,

fR(r ) =

∫
∞

−∞

fS(r − σv) fV (v)dv,

in powers ofσ aroundσ = 0. The approximation holds with remainder term of the order
indicated if (a) fS(s) has bounded third derivative and (b)V has finite third absolute moment
around zero. The approximation error expressed here and later aso(σ 2) is in fact of orderO(σ 3)

or smaller and isO(σ 4) if V is symmetrically distributed with bounded fourth moment.
Let

W = XUσ ,

and defineR, S andV in (6) as logarithms of respectivelyW, X andU . Then usingfW(w) =

w−1 fR(logw) and (7) gives

fW(w) ' w−1
(

fS(logw) +
σ 2

2
f ′′

S(logw)

)
,

and expressing the right-hand side of this approximation in terms of the density ofX, and its
derivatives yields

fW(w) ' fX(w) +
σ 2

2
(w2 f ′′

X(w) + 3w f ′

X(w) + fX(w)). (8)

Finally, definingZ = exp(−σ 2/2)W, which introduces the mean correction so thatE[Z] '

E[X], noting that

fZ(z) = eσ2/2 fW(eσ2/2z)

' fW(z) +
σ 2

2
( fW(z) + z f ′W(z)),
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substituting in (8) and retaining terms of orderO(σ 2) gives the approximate error-contaminated
density, as follows:

fZ(z) ' f a
Z (z) = fX(z) +

σ 2

2
(z2 f ′′

X(z) + 4z f ′X(z) + 2 fX(z))

= fX(z) +
σ 2

2

d2

dz2
(z2 fX(z)). (9)

Details are given in Chesheret al. (2001).

2.3. Approximate welfare measure functionals

For all the welfare measures considered in this paper (see Table 1) the approximate effect of
measurement error on welfare measure functionals is determined by its effect on the functional
L(a, N; F) given in equation (1). This effect is now derived. Applying the functional to the
error-contaminated income distribution gives

L(aZ, N; FZ) =

∫ aZ

0
N(z, aZ)d FZ(z)·

The limit of integration may be distribution dependent and to allow for this write the limit of
integration asaZ = A(FZ), let aX = A(FX), and assumeaZ admits a first-order Taylor series
expansion inσ 2 as follows:aZ ' aX + σ 2A1(FX). Substituting this approximation foraZ and
the density approximation, equation (9), gives the following:

L(aZ, N; FZ) '

{∫ aX

0
+

∫ aX+σ2A1(FX)

aX

}
N(z, aZ) f a

Z (z)dz·

Expanding N(z, aZ) and neglecting terms of ordero(σ 2) the following approximation is
obtained:

L(aZ, N; FZ) ' L(aX, N; FX) + σ 2A1(FX)N(aX, aX) fX(aX)

+ σ 2A1(FX)

∫ aX

0
N01(x, aX) fX(x)dx

+
σ 2

2

∫ aX

0
N(x, aX)

d2

dx2
(x2 fX(x))dx. (10)

Here and laterNi j (y, a) denotes the(i + j )-order partial derivative∇ i
y∇

j
a N(y, a). These

derivatives must be bounded for alli and j with i + j = 2 for this approximation to hold.
The leading term in equation (10) is the functional applied to the error-free distribution. The

remaining terms capture the first-order effect of measurement error. Of these, the first term arises
because of the potential distribution dependence of the limit of integration, the second term arises
because of the potential appearance of this distribution dependent limit in the functionN and the
final term arises directly from error contamination of the density ofX.

Under suitable restrictions on the behaviour ofN(x, aX) and fX(x) asx → 0, the last term
can be integrated by parts to give the following approximation:5

L(aZ, N; FZ) ' L(aX, N; FX) + σ 2A1(FX)N(aX, aX) fX(aX)

+ σ 2A1(FX)

∫ aX

0
N01(x, aX) fX(x)dx

5. The required conditions are limx→0 x N(x, aX) fX(x) = 0, limx→0 x2N(x, aX) f ′
X(x) = 0,

limx→0 x2N10(x, aX) fX(x) = 0.
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+
σ 2

2
{N(aX, aX)a2

X f ′

X(aX) + [2N(aX, aX)aX − N10(aX, aX)a2
X] fX(aX)}

+
σ 2

2

∫ aX

0
N11(x, aX)x2 fX(x)dx. (11)

This approximation is employed in the remainder of the paper.

3. APPROXIMATIONS FOR PARTICULAR WELFARE MEASURES

3.1. Introduction

In this section explicit forms of the approximations (10) and (11) are provided for some
commonly used welfare measures. Moments and quantiles, which figure in a number of the
welfare measures, are considered first, and then, in sections 3.3 and 3.4, the approximate
effects of measurement error on the Generalized Entropy Index, the Lorenz curve and the
Gini coefficient are examined. Section 3.5 considers poverty indices, first with distribution-
independent poverty lines, and then with distribution-dependent poverty lines.

3.2. Moments and quantiles

Moments, functions of moments, and quantiles appear in a number of the welfare measures and it
is useful to have approximations of these to hand. Using equation (11) witha = ∞, N(y) = yα

and suitable assumptions on the tail behaviour offX yields

E[Zα
] ' E[Xα

]

(
1 +

σ 2

2
α(α − 1)

)
, (12)

which implies, for the mean and its inverse,

E[Z] ' E[X] E[Z]
−1

' E[X]
−1. (13)

The quantile function is defined implicitly byp = FZ(QZ(p)) = FX(QX(p)). Consider
equation (11) withN(y) = 1, letaZ = QZ(p) which has Taylor series approximation

QZ(p) ' QX(p) + σ 2A1(FX), (14)

where

A1(FX) = ∇σ2 QZ(p)|σ2=0,

which is now derived. SinceL(QZ(p), 1; FZ) = L(QX(p), 1; FX) = p, upon substituting in
(11) we have

p ' p + σ 2 fX(QX(p))A1(FX) +
σ 2

2
{Q2

X(p) f ′

X(QX(p)) + 2QX(p) fX(QX(p))},

giving

A1(FX) = −
1

2

Q2
X(p) f ′

X(QX(p)) + 2QX(p) fX(QX(p))

fX(QX(p))

= −
1
2 QX(p)(η fX (QX(p)) + 2),

where

η fX (a) = ∇logx log fX(x)|x=a,
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is the elasticity of the income density atx = a. Substituting in (14) the following approximation
to the quantile function under measurement error contamination is obtained:

QZ(p) ' QX(p)

[
1 −

σ 2

2
(η fX (QX(p)) + 2)

]
. (15)

To the order of approximation considered, error-contaminated quantiles exceed error-free
quantiles over all intervals in which the elasticity of the density function of true income is less
than−2. Clearly these intervals must be in regions where the density function is falling. At all
p values for which the density is increasing error-contaminated quantiles lie below error-free
quantiles.

The distortion of the quantile function produced by measurement error has consequences
for the “first-order” approach to comparisons of distributions. Consider the class of social
welfare functions

∫
u(y)d F(y) where the utility functionu is increasing, and two distribution

functions FS and FT . A well-known dominance result (Saposnik, 1981, 1983) states that
QS(p) ≥ QT (p) for all p if and only if social welfare associated with distributionFS exceeds
that associated withFT for all utility functions u in the admissible class. Equation (15) shows
that error-free and error-contaminated income distribution functions typically cross. So, when
income distributions subject to differing amounts of measurement error are compared without
consideration of the impact of measurement error, it is possible to conclude that there is no
first-order dominance when in fact there is dominance forerror-free income. Estimation of
components of a measurement error correction, as illustrated in section 5, allows the potential
impact of measurement error on first-order comparisons to be assessed.

3.3. The generalized entropy index

The generalized entropy index (GEI) is of interest because any inequality index which satisfies
the principle of transfer, scale invariance and decomposability must be ordinally equivalent to
the GEI (Cowell, 1980).6

The moment approximations given earlier imply

E[Zα
]E[Z]

−α
' E[Xα

]E[X]
−α

(
1 +

σ 2

2
α(α − 1)

)
,

which implies

GE IZ(α) ' GE IX(α)

(
1 +

σ 2

2
α(α − 1)

)
+

σ 2

2
·

To the order of approximation considered, the GEI is larger for error-contaminated income
distributions than for error-free distributions wheneverα(α − 1) > −GE IX(α)−1, which holds
for all GE IX(α) whenα < 0 andα > 1, and for allα when GE IX(α) < 4. Note that 4
is an unusually large value for this index in practice forα ∈ (0, 1). The first-order effect of
measurement error on the GE Index is invariant with respect to the form of the error-free income
distribution.

3.4. The Lorenz curve and the Gini coefficient

The “second-order” approach to distributional comparison considers the class of social welfare
functions

∫
u(y)d F(y) where the utility functionu is increasing and concave, and two

6. One such ordinally equivalent index is the Atkinson index (Atkinson, 1970) which is therefore not considered
specifically here.
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distribution functionsFS and FT . Atkinson (1970) shows that, whenS and T have the same
mean, all measures satisfying symmetry, mean independence and the principle of transfers will
register a greater inequality forFT than for FS if and only if the Lorenz curve associated with
FS lies everywhere above that associated withFT . The theorem has been extended by Shorrocks
(1983) to distributions with different means: social welfare associated with distributionFS is
greater than that associated withFT if and only if the generalized Lorenz curve forFS lies
everywhere above that ofFT . It is therefore of interest to study the impact of measurement error
on Lorenz curves.

To derive the effect of measurement error on the Lorenz curve ordinate, first consider the
generalized Lorenz curve ordinateL(QZ(p), z; FZ). Exploiting the quantile approximation (15)
which gives the form of the termA1(FX) that appears in (11) we have the following:

8Z(p) = L(QZ(p), z; FZ) ' 8X(p) −
σ 2

2
Q2

X(p) fX(QX(p)). (16)

SinceE[Z]
−1

' E[X]
−1, the simple Lorenz curve ordinate is

9Z(p) ' 9X(p) −
σ 2

2
E(X)−1Q2

X(p) fX(QX(p)). (17)

The first-order effect of measurement error is to push the Lorenz curve outwards, so the Gini
coefficient must be increased.

The Gini coefficient for the distribution of error-contaminated income is

GCZ = 1 − 2
∫ 1

0
9Z(p)dp·

Using the approximation (17) and integrating with respect toQX(p) in place ofp leads directly
to

GCZ ' GCX + σ 2 E[X2 fX(X)]

E[X]
·

To the order of approximation considered, the Gini coefficient for the distribution of error-
contaminated income is larger than the Gini coefficient for the distribution of error-free income.
The increase caused by measurement error is smaller when the density ofX is high-valued
close to zero and low-valued far from zero, for example when the income distribution is heavily
positively skewed.

3.5. Poverty indices

A large class of poverty indices (see Fosteret al., 1984) have the form

PZ(θ, c) =

∫ c

0

(
1 −

y

c

)θ

d FY(y) = L
(

c,

(
1 −

y

c

)θ

; FY

)
,

where θ ≥ 0 is a sensitivity parameter andc is the poverty line. In some applications the
poverty line is distribution dependent, for example specified as a fraction of median income.
First consider the case in which the poverty line is distribution independent.

Distribution-independent poverty lines. Care is required in producing approximations
to these poverty indices because the integration by parts done to reach (11) is not valid whenθ <

2. However, the approximation (10) is valid for allθ > 0, giving the following approximation:

PZ(θ, c) = PX(θ, c)(1 + σ 2) +
σ 2

2

∫ c

0

(
1 −

x

c

)θ

(x2 f ′′

X(x) + 4x f ′

X(x))dx·
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Whenθ = 0 we have the head count indexL(c, 1, FZ) and direct application of (10) with
N(z, aZ) = 1, gives

PZ(0, c) ' PX(0, c) +
σ 2

2
(c2 f ′

X(c) + 2c fX(c))

= PX(0, c) +
σ 2

2
c fX(c)(η fX (c) + 2), (18)

where in the second lineη fX (c) is the elasticity of the income density at the poverty line. This
mirrors the quantile approximation given in section 3.2. To the order considered here the head
count index for the error-contaminated distribution exceeds that for the error-free distribution
wheneverη fX (c) > −2. So, if the poverty line is drawn where the income density is rising, for
example to the left of a mode of the income density, then measurement error causes the head
count index to rise. However, for a poverty line drawn where the income density is falling it
may be possible for measurement error to cause the head count index to fall. This could perhaps
occur in cases in which the mode of the income density is far to the left of the main mass of the
distribution.

Whenθ = 1, one round of integration by parts can be done and this is sufficient to give the
following simple approximation:

PZ(1, c) ' PX(1, c) +
σ 2

2
c fX(c). (19)

In this case, to the order considered the error-contaminated index is larger than the error-free
index forall income distributions and choices of distribution-free poverty line. This is also the
case for allθ ≥ 2 when (11) is valid, and sinceN(c, c) = N10(c, c) = 0, we obtain

PZ(θ, c) ' PX(θ, c) +
σ 2

2
θ(θ − 1)

∫ c

0

(
z

c

)2(
1 −

z

c

)θ−2

fX(z)dz, (20)

which, after some manipulation can be written as

PZ(θ, c) ' PX(θ, c) +
σ 2

2
θ(θ − 1)[PX(θ, c) − 2PX(θ − 1, c) + PX(θ − 2, c)]. (21)

The integral in (20) is positive, so forθ ≥ 2 the error-contaminated index is always larger than
the error-free index.7

Distribution-dependent poverty lines. Now let the poverty line be distribution
dependent. There are many possible specifications but one commonly encountered specifies
the poverty line as a function of ap-quantile (for example, a fraction of the median),cZ =

c(QZ(p)), with cX = c(QX(p)).
In the case of the head count index, sinceN(x, aX) = 1, the term in (11) involving

N01(x, aX) is absent and the following approximation is obtained:

PZ(0, cZ) ' PX(0, cX) +
σ 2

2
cX fX(cX)(η fX (cX) + 2 − ηc(QX(p))(η fX (QX(p)) + 2))·

Hereηc is the elasticity of the poverty linec(QX(p)) with respect toQX(p). In all practical
applicationsc(·) will be increasing, in which case the additional term arising because the poverty
line is distribution dependent will tend to reduce the impact of measurement error as long as

7. Forθ in [0, 1) ∪ (1, 2) it appears that the sign of the approximation toPZ(θ, c) − PX(θ, c) depends upon the
location of the poverty line,c, and on the error-free income density as is the case forθ = 0 (see equation (18)). It does
not seem possible to signPZ(θ, c) − PX(θ, c) for θ < 2 except whenθ = 1.
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cX = c(QX(p)) andQX(p) are close enough thatη fX (cX) + 2 andη fX (QX(p)) + 2 have the
same sign.8

Now consider poverty indices withθ > 0 and a distribution-dependent poverty line. Here

N01(x, cX) = θ
x

c2
X

(
1 −

x

cX

)θ−1

,

and, forθ ≥ 1, after some manipulation we obtain the term,3, to be added to the approximations
to allow for distribution dependence in the poverty line

3(QX(p), c(·)) '
σ 2

2
θ(η fX (QX(p)) + 2)ηc(QX(p))(PX(θ, cX) − PX(θ − 1, cX))·

SincePX(θ, cX) is a decreasing function ofθ and in practicec(·) will be an increasing function,
3 will be positive when the density elasticity at the poverty line,η fX (QX(p)), exceeds−2. For
θ ∈ (0, 1) the integral in (11) involvingN01(x, aX) does not converge and the small variance
approximation used here is in this case not available.

4. THE ACCURACY OF THE APPROXIMATIONS

We now examine the accuracy of the approximations. We do this by computing theexact
distributions of error-contaminated income for a variety of combinations of error-free income and
measurement error distributions and differing amounts of measurement error. We then calculate
welfare measures using these exact distributions and compare them with the approximations.9

Since we compare the error-contaminated welfare measures with what is obtained when there
is no measurement error, this exercise also gives a feeling for the potential magnitude of the
distortions to welfare measures caused by measurement error.

For this purpose we work in a flexible framework and consider a variety of cases in which
log error-free income and log measurement error are independently distributed with exponential
power (EP) distributions (see Box and Tiao, 1973). A random variableV ∈ (−∞, ∞) with
an EP distribution with meanµ, scale parameterτ > 0 and shape parameterβ ∈ (−1, 1] has
density function proportional to exp{−τ−1

|v − µ|
2/(1+β)

}. Nine combinations of measurement
error distribution and error-free income distribution are considered, namely combinations of:

• three EP distributions for zero mean log measurement error withβM E = −0·9 (close to
uniform),βM E = 0·0 (Gaussian) andβM E = +1·0 (Laplace), and,

• three EP distributions for log error-free income withβI NC ∈ {−0·5, 0·0, +0·5}.

Poverty indexes are studied first, then Lorenz curve ordinates and the Gini coefficient.

4.1. Poverty indexes

We consider poverty lines,c, drawn so that for each of the three error-free income distributions
the headcount index is 0·20. Figure 1 shows exact and approximate head count indexes.10

8. Of course ifcZ = c(QZ(p)) andQZ(p) are coincident then theO(σ2) disappears altogether because in this
trivial casePZ(0, cZ) = PZ(0, QZ(p)) = p exactly.

9. Exact error-contaminated income distributions and the required functionals of them were computed
numerically using the Gauss–Kronrod quadrature method as implemented in theNIntegrate function of
Mathematica 4.0 (Wolfram, 1999).

10. An Appendix published at http://www.restud.com/supplements.htm shows very similar results for the the
poverty gap index,PY(1, c) and the poverty severity index,PY(2, c).
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FIGURE 1

Poverty indexP(0, c) with poverty line,c, at the 20th percentile of the error-free income distribution. Approximate
(solid) and exact (dashed) error contaminated index relative to error-free index. Shape parameters: error-free income

βI NC , measurement errorβM E .

There are nine panes showing the ratio of the exact (dashed) and approximate11 (solid) error-
contaminated indexes to the value of the error-free index as measurement error varies so that the
excess log variance ratio,ν = Var[log Z]/Var[log X], varies from 1–1·25. Each pane relates to a
distinct combination of error-free income distribution and measurement error distribution.

Looking first at the dashed lines in Figure 1, it can be seen that for all distributional
combinations the impact of measurement error on the index is substantial, varying close to
linearly with the excess log variance ratio. An excess log variance ratio of 1·25 causes the
headcount to be inflated by around 25% relative to the values for error-free income. The
corresponding figures12 for the poverty gap and poverty severity indexes are respectively 50%

11. The form of the approximation used here employsFZ rather thanFX inW∗(·) since this is the form more
likely to be employed in applications, as is done in section 6.

12. See the Appendix published at http://www.restud.com/supplements.htm.
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FIGURE 2

Ratios of corrected measurement error contaminated poverty indexes to exact error-free indexes for measurement error
distributions with shape parameters:βM E = −0·9 (near uniform, solid),βM E = 0·0 (Gaussian, dotted),βM E = +1·0

(Laplace, dashed). Poverty line drawn at the 20th percentile of error-free income.

and 80%. Looking at the solid lines in Figure 1 it can be seen that the approximations to these
significant measurement error effects are very good indeed. The approximations for the head
count, poverty gap and poverty severity indexes (the last two not shown here) deviate by no more
than 4% from the exact values. In most cases the deviations are far smaller than this.

Figure 2 compares bias corrected indexes with the values of the head count, poverty gap and
poverty severity indexes for error-free distributions, plotting(W(FZ) − σ 2W∗(FZ))/W(FX)

as a function of the excess log variance ratio. In all cases this ratio lies close to 1 indicating
that the approximations deliver accurate measurement error corrections under a wide variety of
conditions.
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FIGURE 3

Exact (dashed) and approximate (solid) error-contaminated Gini coefficients expressed as ratios to error-free values.
Shape parameters: error-free incomeβI NC , measurement errorβM E .

4.2. Gini coefficients

Figure 3 shows exact and approximate error-contaminated Gini coefficients expressed as ratios
to values of the Gini coefficient13 for error-free data for excess log variance ratios varying from
1·0–1·2. Measurement error on this scale causes inflation of the Gini coefficient by up to 8% (see
the dashed lines in Figure 3), a magnitude very accurately picked up by the approximations.

13. An Appendix published at http://www.restud.com/supplements.htm compares exact and approximate Lorenz
curves ordinates. Those approximations show a degree of accuracy similar to that reported here for the Gini coefficient.
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5. ESTIMATION OF THE APPROXIMATE MEASUREMENT ERROR DISTORTION

The approximations give insight into the relative sensitivity of different welfare measures
to measurement error and the way in which sensitivity varies with the form of the income
distribution. They also have more practical uses. To see this rewrite the generic form of the
approximations as follows:

W(FX) 'W(FZ) − σ 2W∗(FZ),

or equivalently, to the order of approximation considered, in multiplicative form as follows:

W(FX) 'W(FZ) exp

(
−σ 2W∗(FZ)

W(FZ)

)
. (22)

Since the welfare measures considered are all by construction non-negative, we might expect this
multiplicative form to perform better, particularly whenW(FZ) is small.

Applying a welfare measure to error-contaminated data produces an estimate ofW(FZ) but
it isW(FX) that is of interest. With an estimate ofW∗(FZ) it is possible to estimate the welfare
measure for error-free data,W(FX), if an extraneous estimate ofσ 2 is available. Even without
such an estimate one may have a view of a plausible range of values forσ 2 in which case one
can obtain an approximate interval estimate of the error-free welfare measure.

In this section we propose simple estimators of the “correction terms”,W∗(FZ). The
accuracy of the approximations shown by the exact calculations of the previous section suggest
that knowledge ofW∗(FZ) will be highly informative, but it is possible that errors introduced by
estimating the termsW∗(FZ) will reduce the value of the procedure. To get an idea of whether
this is likely to be the case we report a small Monte Carlo experiment focussing on the sampling
distributions of estimates of the correction terms.

We propose to estimate each termW∗(FZ) by applying the functionalW∗ to a
nonparametric estimate ofFZ . In some cases it is possible to use the estimateW∗(F̂ E DF

Z ) where
F̂ E DF

Z is the empirical distribution function (EDF). In other cases (e.g. whereW∗ involves
derivatives ofFZ) we propose using kernel estimators, in particular with Gaussian kernels
because with this choice rather simple expressions for the welfare measure corrections arise.
Since income data are usually heavily skewed we expect better performance applying the kernel
method tolog incomedata. The density estimators for (log income) data{yi }

n
i =1 take the generic

form

f̂Y(y) =
1

n

∑n

i =1
Kh(y − yi ) =

1

n

∑n

i =1

1

h
φ

(
y − yi

h

)
,

whereφ is the standard normal density function, andh is a bandwidth parameter.

5.1. Poverty indices with distribution-independent poverty lines

First consider kernel based estimation of thepoverty indicesusing the error-contaminated income
data. LetR = log Z have density functionfR(r ). The poverty indices in terms of the density of
log income are

PZ(θ, c) =

∫ logc

−∞

(
1 −

exp(r )

c

)θ

fR(r )dr,

and replacing the unknown log income density by an estimator based onn realized log income
values,{r i }

n
i =1, gives the estimator

P̂Z(θ, c) =
1

n

∑n

i =1

∫ logc

−∞

(
1 −

exp(r )

c

)θ

Kh(r − r i )dr,
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which for the three cases considered here take the following forms:

P̂Z(0, c) =
1

n

∑n

i =1
8

(
logc − r i

h

)
,

P̂Z(1, c) = P̂Z(0, c) −
1

nc

∑n

i =1
exp

(
r i +

h2

2

)
8

(
logc − (r i + h2)

h

)
,

P̂Z(2, c) = 2P̂Z(1, c) − P̂Z(0, c) +
1

nc2

∑n

i =1
exp(2(r i + h2))8

(
logc − (r i + 2h2)

h

)
,

where8 is the standard normal distribution function.
Now consider estimation of themeasurement error correcting functionalsW∗ which in this

section we denote byCZ(θ, c). First consider the head count index which, for a poverty line
drawn atc has (see equation (18))

CZ(0, c) =
1
2(c2 f ′

Z(c) + 2c fZ(c))

=
1
2( fR(logc) + f ′

R(logc)),

where fR is the density function of log income. This is replaced by a kernel density estimate to
produce the estimated functional. The resulting estimate is as follows:

ĈZ(0, c) =
1

2n

∑n

i =1

(
1 −

logc − r i

h2

)
1

h
φ

(
logc − r i

h

)
·

The poverty index withθ = 1 has (see equation (19))

CZ(1, c) =
1
2(c fZ(c))

=
1
2 fR(logc),

which we estimate by

ĈZ(1, c) =
1

2n

∑n

i =1

1

h
φ

(
logc − r i

h

)
·

The poverty index withθ = 2 has (see equation (21))

CZ(2, c) = PZ(2, c) − 2PZ(1, c) + PZ(0, c),

and combining the estimates of the three poverty indices gives

ĈZ(2, c) =
1

nc2

∑n

i =1

∫ logc

−∞

exp(2r )Kh(r − r i )dr

=
1

nc2

∑n

i =1
exp(2(r i + h2))8

(
logc − (r i + 2h2)

h

)
.

The poverty indices andCZ(2, c) can also be estimated directly by replacing the distribution
function of Z by the empirical distribution function (EDF) in their defining equations.

5.2. The Gini coefficient

The Gini coefficient is conveniently estimated using the relative mean difference form

ĜCZ =
1

2z̄

1

n2

∑n

i =1

∑n

j =1
|zi − z j |,
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wherez̄ is sample mean income. This is an empirical distribution function (EDF) based method.
The measurement error correction term prior to multiplication byσ 2 is as follows:

AZ =
E[Z2 fZ(Z)]

E[Z]
·

SinceE[Z2 fZ(Z)] = E[exp(R) fR(R)] whereR = log(Z), the correction term can be estimated
by the kernel method as14

ÂZ =
1

z̄

∫
∞

−∞

exp(r )
1

n2

∑n

i =1

∑n

j =1

1

h
φ

(
r − r i

h

)
1

h
φ

(
r − r j

h

)
dr

=
1

z̄

1

2h
√

π

1

n2

∑n

i =1

∑n

j =1
exp

(
−

(
r i − r j

2h

)2

+
1

2
(r i + r j ) +

h2

4

)
.

5.3. Estimator performance

Table 3 shows the results of a 1000 replication Monte Carlo experiment using a standard log
normal distribution forZ, conducted to assess the performance of the proposed estimators of the
poverty indices (̂PZ(θ, c), θ ∈ {0, 1, 2}) and measurement error correction terms (ĈZ(θ, c)) and
of the Gini coefficient estimator̂GCZ and the estimator of its correction term̂AZ . The bandwidth
was chosen at each replication using Silverman’s “rule of thumb” (Silverman, 1986) which gave
very similar results to those obtained with more computationally demanding cross-validation.15

Means and standard deviations (SD) are reported for each estimator. The experiments were run
with a sample size at each replication,n, equal to 200 and 500. The column headed “True” gives
exact values, calculated using the methods of the previous section.

There is some slight upward bias in the kernel based estimates of the poverty indices which
is absent for the EDF based estimates. However, there seems to be little bias in the kernel
based estimates of the correction terms forθ ≥ 1. The estimates of the Gini coefficient and
its correction display little sign of bias.

This small experiment suggests that in samples of the sort of size frequently encountered
in inequality and poverty measurement quite accurate estimation of the proposed measurement
error corrections is possible. The accuracy of the corrections documented in the previous sections
suggests that there is scope for useful application of estimated approximate measurement error
corrections in practical welfare measurement exercises. The next section illustrates such an
application.

6. AN APPLICATION TO REGIONAL POVERTY AND INEQUALITY COMPARISONS IN
INDONESIA

This section illustrates the use of these procedures in a sensitivity analysis of the sort that
could be conducted when using regional welfare measures to inform the targeting of poverty
interventions. Targeting might be based on observed differences in welfare measures across
regions. But these differences could arise because of differences in amounts of measurement
error. This could be an important issue when comparing measures across urban and rural areas.
Accurate measurement may be more difficult to achieve in the country where there are likely

14. Alternatively one could use a single kernel to produce an estimatef̂R(r ) and then estimatêAZ as follows:

ÂZ =
1

nz̄

∑n

i =1
exp(r i ) f̂R(r i )·

15. Cross validation was used in the application in section 6.
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TABLE 3

Monte Carlo estimates of means and SD of estimators of welfare indexes and measurement error
corrections

Sample size 200 Sample size 500
Index or Kernel EDF Kernel EDF

Correction True Mean S.D. Mean S.D. Mean S.D. Mean S.D.

P̂Z(0, c) 0·159 0·170 0·022 0·159 0·025 0·167 0·016 0·160 0·016
ĈZ(0, c) 0·242 0·229 0·044 — — 0·232 0·034 — —

P̂Z(1, c) 0·057 0·064 0·011 0·057 0·011 0·062 0·007 0·057 0·007
ĈZ(1, c) 0·121 0·120 0·014 — — 0·121 0·010 — —

P̂Z(2, c) 0·028 0·033 0·007 0·028 0·007 0·032 0·005 0·029 0·004
ĈZ(2, c) 0·074 0·076 0·009 0·074 0·014 0·076 0·007 0·074 0·009

ĜCZ 0·521 — — 0·515 0·028 — — 0·519 0·019

ÂZ 0·220 0·220 0·020 — — 0·218 0·014 — —

more non-market transactions, consumption of own production and associated imputation of
prices.

In this illustrative example the data employed are monthly per capita household
expenditures (1993 Rupiah per person per month (Rppm)) reported in the 1993 Indonesian
household survey SUSENAS in urban and rural areas in four provinces of Indonesia with poverty
lines set here, for illustration only, at 20000 Rppm in each area.16

We calculate three welfare measures for each area, estimate the measurement error
correction terms, and then apply these for a range of values of measurement error log variance.
We focus on the Gini coefficient,GCZ and on the head count index,PZ(0, c) and the poverty gap
index, PZ(1, c), both with poverty linec = 20000 Rppm. For log measurement error variance
σ 2 the approximately corrected welfare measures are as follows:

P̂X(0, c) = P̂Z(0, c) −
σ 2

2
(c2 f̂ ′

Z(c) + 2c f̂Z(c)),

P̂X(1, c) = P̂Z(1, c) −
σ 2

2
c f̂Z(c),

ĜCX = ĜCZ − σ 2 Ê[Z2 fZ(Z)]

Ê[Z]
.

Here fZ is the density of (error contaminated) expenditure per head,Z, f ′

Z is its derivative, and
f̂Z and f̂ ′

Z are nonparametric estimates of the density and its derivative.
We ask: could plausibly different amounts of measurement error across the areas be

responsible for the differences in the welfare measures that we see when they are computed
using the raw, error-contaminated, survey data?

16. SUSENAS is the “Survei Sosial Ekonomi Nasional” described in Surbaki (1995). An analysis of poverty
incidence using the survey can be found in Bidani and Ravallion (1993). Sample sizes (households: urban then rural) are
as follows: C. Java: 2366, 4337; Lampung: 701, 1319; W. Nusa Tenggara: 708, 1342; E. Nusa Tenggara: 492, 1191.
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TABLE 4

Estimated poverty indexes and Gini coefficients for error-free income at alternative
values of measurement error log variance

Urban areas Rural areas
Poverty indexes Gini Poverty Indexes Gini

Province σ 2 P̂X(0, c) P̂X(1, c) ĜCX P̂X(0, c) P̂X(1, c) ĜCX

Central 0·00 0·055 0·007 0·313 0·236 0·041 0·273
Java 0·02 0·043 0·005 0·304 0·216 0·033 0·262

0·04 0·035 0·003 0·295 0·197 0·027 0·252
0·06 0·028 0·002 0·286 0·180 0·022 0·241

Lampung 0·00 0·054 0·007 0·303 0·251 0·044 0·256
0·02 0·044 0·005 0·294 0·236 0·037 0·245
0·04 0·036 0·004 0·285 0·222 0·031 0·234
0·06 0·030 0·003 0·276 0·209 0·025 0·224

W. Nusa 0·00 0·075 0·011 0·316 0·247 0·040 0·254
Tenggara 0·02 0·065 0·008 0·307 0·228 0·032 0·242

0·04 0·057 0·006 0·299 0·211 0·026 0·231
0·06 0·049 0·004 0·291 0·195 0·021 0·221

E. Nusa 0·00 0·063 0·007 0·344 0·267 0·052 0·230
Tenggara 0·02 0·054 0·005 0·336 0·241 0·044 0·217

0·04 0·047 0·004 0·328 0·218 0·037 0·204
0·06 0·040 0·002 0·321 0·198 0·031 0·193

Table 4 shows the results of the calculations.17 The rows labelledσ 2
= 0 show the

welfare measures before correction for measurement error. Poverty measures are higher, and
Gini coefficients lower, in rural areas than in urban areas. The Table suggests that within each
province rural and urban sectors appear to be very different, but that the same sectors across the
provinces are rather similar.

The remaining rows show estimates of the poverty indexes and Gini coefficients after
correction18 for varying amounts of measurement error withσ 2 denoting the conjectured
variance of log measurement error. The variance of log expenditure per head is between 0·2 and
0·3 for the areas considered here, so measurement error with log variance in the range 0–0·06
used in Table 4 corresponds to an excess log variance ratio in the range 1–1·4.

These results suggest that the differences in measured poverty and inequality across rural
and urban areas cannot plausibly be explained by differences in measurement error. Even large
amounts of measurement error in rural areas suggest error-free poverty indices far above, and
Gini coefficients far below, the measured values for urban areas. However, it is clear that
differences in the incidence of measurement error of the sorts of magnitude considered here
could seriously disturb the view of regional differences in inequality when comparisons are made
within rural or urban areas.

17. The poverty indexes and the Gini coefficient have been calculated using an EDF estimator. The corrections
have been calculated using kernel methods with bandwidth chosen using the fast Fourier approximation to the cross
validation method as proposed by Silverman (1986).

18. The multiplicative form (22) of the correction has been used here.
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7. CONCLUDING REMARKS

Measurement error is an ever-present, generally significant, but usually neglected, feature of
survey based income and expenditure data. Since it is usually variance-increasing, measurement
error can be expected to have a significant impact on inequality and poverty measurement. This
paper has provided approximations to the effect of measurement error on a variety of welfare
measures, both inequality measures and poverty indices. We have shown how these can be used
to investigate the sensitivity of analysis of regional poverty and inequality measures to differential
incidence of measurement error.

The approximations show how welfare measures for error-free income distributions deviate
from welfare measures for error-contaminated income distributions, the deviation to a first
approximation being independent of the shape of the measurement error distribution and
determined by the measurement error log variance and estimable functionals of the error-
contaminated income distribution. The approximations are quite accurate for a wide variety
of true income and measurement error distributions even when there are moderate amounts of
measurement error. We have proposed methods for estimating these functionals and investigated
their performance. They can be estimated accurately with samples of the size typically
encountered in applied welfare measurement.

Our approximations are valid, and seem accurate, for a wide range of error-free income
and independent measurement error distributions, but there may arise cases in which the
independence assumption is hard to justify. With a particular model for dependence progress
along similar lines could be made, but it may be difficult to formulate and identify a suitable
model. One would need validation data to make real headway but with that one could
develop exact inferential procedures and the methods of this paper would not be needed. The
tool developed here allows assessment of the potential impact of measurement error under
independence, the leading case of interest, when, as is normally the case, all that one has to
work with is the measurement error-contaminated survey data.

Acknowledgements. We are grateful to Martin Browning, Frank Cowell, to two referees and an editor of the
Journal for helpful comments. Andrew Chesher and Christian Schluter received support under ESRC grants, respectively:
R008237386 and R000222650.

REFERENCES

ATKINSON, A. B. (1970), “On the Measurement of Inequality”,Journal of Economic Theory, 2, 244–263.
BIDANI, B. and RAVALLION, M. (1993), “A New Regional Poverty Profile for Indonesia”,Bulletin of Indonesian

Economic Studies, 29, 37–68.
BOX, G. E. P. and TIAO, G. C. (1973),Bayesian Inference in Statistical Analysis(New York: Wiley Classics).
CHESHER, A. D. (1991), “The Effect of Measurement Error”,Biometrika, 78, 451–462.
CHESHER, A. D., DUMANGANE, M. B. G. and SMITH, R. J. (2001), “Duration Response Measurement Error”,

Journal of Econometrics(forthcoming).
CHESHER, A. D. and SCHLUTER, C. (1999), “Welfare Measurement and Measurement Error” (Discussion Paper No.

98/463, Department of Economics, University of Bristol).
COWELL, F. A. (1980), “On the Structure of Additive Inequality Measures”,Review of Economic Studies, 47, 521–531.
COWELL, F. A. (2000), “Measurement of Inequality”, in A. B. Atkinson and F. Bourguignon (eds.)Handbook of Income

Distribution (Amsterdam: North Holland).
COWELL, F. A. and VICTORIA-FESER, M.-P. (1996), “Robustness Properties of Inequality Measures”,Econometrica,

64, 77–101.
DAVIDSON, R. and DUCLOS, J.-Y. (1997), “Statistical Inference for the Measurement of the Incidence of Taxes and

Transfers”,Econometrica, 65, 1453–1465.
FOSTER, J. E., GREER, J. and THORBECKE, E. (1984), “A Class of Decomposable Poverty Measures”,Econometrica,

52, 761–776.
ISRAELSEN, D., MCDONALD, J. B. and NEWEY, W. K. (1984), The Impact of Measurement Error on the Distribution

of Income, Advances in Econometrics, JAI Press.
RAVALLION, M. (1994), “Poverty Rankings Using Noisy Data on Living Standards”,Economics Letters, 45, 481–485.
SAPOSNIK, R. (1981), “Rank Dominance in Income Distribution”,Public Choice, 36, 147–151.
SAPOSNIK, R. (1983), “On Evaluating Income Distributions: Rank Dominance”,Public Choice, 40, 329–336.



378 REVIEW OF ECONOMIC STUDIES

SEIDL, C. (1988), “Poverty Measurement: A Survey”, in D. Boes, M. Rose and C. Seidl (eds.)Welfare and Efficiency in
Public Economics(Berlin: Springer-Verlag).

SHORROCKS, A. F. (1983), “Ranking Income Distribution”,Economica, 50, 3–17.
SILVERMAN, B. W. (1986),Density Estimation for Statistics and Data Analysis(London: Chapman and Hall).
SURBAKI, P. (1995),Indonesia’s National Socio-Economic Survey(Jakarta: Central Bureau of Statistics).
VAN PRAAG, B., HAGENAARS, A. and VAN ECK, W. (1983), “The Influence of Classification and Observation Error

on the Measurement of Income Inequality”,Econometrica, 51, 1093–1108.
WOLFRAM, S. (1999),The Mathematica Book, 4th Edition(Champaign: Wolfram Media).


