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Abstract

The Lorenz dominance criterion is the centre piece of inequality analysis. Yet, the appeal
of this criterion, which requires considering Lorenz curves in their entirety, is undermined by
the practical problem that many sample Lorenz curves intersect in the tails. The commonly used
inferential methods, based on central limit theorem arguments, do not apply to the tails since these
contain too few observations. By contrast, we propose a test procedure for distributions whose
tails lie in the domain of attraction of the Fr4echet distribution, which fully takes into account the
tail behaviour of Lorenz curves. Our experiments and empirical examples demonstrate the good
performance of the proposed test: in many cases we are able to infer that despite sample tail
crossings the population Lorenz curves do, in fact, exhibit Lorenz dominance. c© 2002 Elsevier
Science B.V. All rights reserved.

JEL classi,cation: ; D31; D63; I32

Keywords: Lorenz curves; Statistical inference; Tail behaviour; Regular variation

1. Introduction

The main tool for analysing economic inequality is the Lorenz curve. In order to
compare inequality between two distributions one draws their Lorenz curves and con-
cludes that inequality is unanimously higher in one distribution if its Lorenz curve is
everywhere below the curve of the other distribution: any inequality measure which
satis<es the principles of transfer, of anonymity, and of mean independence will rank
the two distributions in the same way as the Lorenz curves (Atkinson, 1970). The
Lorenz curve provides, however, only a partial ordering of income distributions. If
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the curves cross, the ranking is indeterminate unless one is willing to make further
assumptions about the social welfare function.

Population Lorenz curves are rarely known since one rarely has information about
the entire population, and empirical Lorenz curves have to be estimated from sam-
ple data. The statistical theory for the main body of the Lorenz curve, which con-
tains many observations, is well-developed (Beach and Davidson, 1983; Beach and
Richmond, 1985; Davidson and Duclos, 1997). However, these methods do not apply
to the tails of the Lorenz curve since the tails contain too few observations to per-
mit invoking the usual central limit theorem arguments. However, the tail behaviour
is of considerable interest, and it is precisely in the tails where crossings often oc-
cur in practise. Such crossings of sample Lorenz curves can occur in practice al-
though the population Lorenz curves do not cross. This possibility is illustrated by
our experiments, reported below, with realistically calibrated parametric models: 45%
of sample Lorenz curves intersect in the tails, although the population Lorenz curves
do not.

To overcome this tail behaviour problem we develop a test which is based on
extreme value theory and the theory of regular variation. 1 For income distributions
we have in mind, it is reasonable to assume that their tails lie in the domain of
attraction of the Fr4echet distribution, i.e. they decay like power functions. Examples
of parametric models which exhibit this characteristic are the generalised beta
distributions of the second kind (McDonald and Xu, 1995), and therefore the
special cases of the Singh–Maddala distribution and the Dagum distribution, all of
which <t real world income data reasonably well (Brachmann et al., 1996). We
do not examine middle heavy and thin tailed distributions, which decay like
exponential functions, such as log-normal distributions (whose Lorenz curves
cannot cross). Moreover, the <t of parametric models based on power functions
to the tails of real world income data is far superior to the <t of lognormal
models.

The domain-of-attraction assumption permits us to estimate extreme quantiles out-
side the data range without imposing strong assumptions on the parametric form of
the income distribution. The test procedure based on extreme value theory closes
the vexing gap left by the conventional approach to statistical inference for Lorenz
curves: using our test we are able to infer in many cases that despite sample tail cross-
ings, the population Lorenz curves do, in fact, exhibit Lorenz dominance. Moreover,
our experiments suggest that the empirical level of our test is close to its nominal
value.

This paper is organised as follows. Before setting out our proposed test for Lorenz
curve tails, we collect in Section 2 the relevant results from extreme value theory.
The test itself is presented in Section 2.4. Section 3 provides two illustrations of
our testing procedure: a Monte-Carlo simulation and an empirical example using data
on disposable personal income from the Luxembourg Income Study (LIS). Section 4
concludes.

1 For an alternative approach see Ogwang and Rao (1996).
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2. Statistical inference for Lorenz curve tails

2.1. Preliminaries

Let X1; : : : ; Xn be an i.i.d. sample from an absolutely continuous (income) distribution
function FX with FX (0)=0. As the Lorenz curve is scale invariant we assume without
loss of generality that the mean of X is normalized to E(X )= 1. The upper tail of FX
is denoted by IFX (x) = 1− FX (x), and order statistics by X(1)¿ · · ·¿X(n).

The Lorenz curve of X is given by

{(p; LX (p)); 06p6 1} with LX (p) =
∫
x¿0

I(x6F−1
X (p)) x dFX (x);

where I(:) is the indicator function. Let Y be a similarly de<ned random variable. X
Lorenz dominates Y if LX (p)¿LY (p) for all p∈ [0; 1] and LX (p0)¿LY (p0) for at
least one p0 ∈ [0; 1].

Lorenz dominance can equivalently be expressed as second order stochastic domi-
nance of the normalised distributions, because, if E(X ) = E(Y ) = 1;

X Lorenz dominates Y ⇔
∫ ∞

x

IFX (t) dt6
∫ ∞

x

IFY (t) dt for all x¿ 0: (1)

Since this paper is concerned with inference for tail behaviour of Lorenz curves we
assume the following:

Assumption A1. X Lorenz dominates Y in the middle of the distribution.

Tests of this assumption about the main body of the Lorenz curve are well-known
(Beach and Davidson, 1983; Beach and Richmond, 1985; Davidson and Duclos, 1997).
To test for overall Lorenz dominance, we therefore have to test multiple hypotheses:
whether Lorenz dominance occurs (i) in the main body of the Lorenz curve—the
conventional test—and (ii) in the tails. Depending on the formulation of the null and
alternative hypotheses, this calls for either an intersection–union or union–intersection
test (see, e.g. Savin, 1993). We discuss the advocated overall testing procedure in
detail in Appendix B. In order to facilitate the exposition, we concentrate exclusively
on (ii).

2.2. Results from extreme value theory

A well known result concerning the distribution of the maximum is that if there
exist norming constants cn¿ 0 and dn ∈R such that

X(1) − dn

cn
D−→ Z;

then Z is distributed as either of the following three distributions: (i) the Gumbel dis-
tribution exp(−exp(−x)) for x∈R, (ii) the Weibull distribution given by exp(−(−x)�)
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for x6 0 and 1 otherwise, with �¿ 0, and (iii) the Fr4echet distribution

��(x) =

{
0; x6 0;

exp(−x−�); x¿ 0;
(2)

with �¿ 0. We make the following

Assumption A2. The distribution FX lies in the domain of attraction of the Fr4echet
distribution ��.

For income models we have in mind, the Fr4echet distribution is the only relevant
limiting distribution for reasons that will become clearer once we are able to translate
the assumption about the maximum into a condition on the tail of the distribution. To
this end, we use the concept of regular variation. Recall that a function g is called
regularly varying at x0 with index � if

lim
x→x0

g(tx)
g(x)

= t�; t ¿ 0:

The class of all distribution functions with regularly varying tails with parameter � is
denoted by R�. If �= 0, the function is said to be slowly varying.

If the distribution is in the domain of attraction of the Fr4echet distribution �� with
parameter �, the index of regular variation of the upper tail IFX (x) at in<nity equals
�=−�, i.e.

lim
x→∞

IFX (tx)
IFX (x)

= t−�; t ¿ 0: (3)

Hence, even though the approach is not parametric we can use the model IFX (x) =
x−�L0(x) with L0 ∈R0 for the upper tail of the income distribution.

Assumption A2′. FX satis<es for some �¿ 0

IFX (x) = x−�L0(x) (4)

for some slowly varying function L0 ∈R0.

Thus, the tails are heavy in that they decay like power functions. We do not exam-
ine distributions with middle heavy tails which decay exponentially fast, such as the
log-normal distribution (whose population Lorenz curves cannot cross).

Similar arguments apply to the lower tail of FX (x) which we assume to be regularly
varying at 0 with index �,

lim
x→0

FX (tx)
FX (x)

= t�; t ¿ 0: (5)

If FX is regularly varying at zero with � then IFX−1 is regularly varying at in<nity
with −�:

lim
x→∞

IFX−1 (tx−1)
IFX−1 (x−1)

= lim
x→0

FX (t−1x)
FX (x)

= (t−1)� = t−�;
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since IFX−1 (x−1) = FX (x). This relationship allows us to deal with the statistical infer-
ence of upper tails only as the same results hold for the lower tails if we consider the
reciprocals.

We will base our testing procedure on the following important result linking Lorenz
dominance and the parameters of regular variation:

Theorem 1. Under Assumptions A1 and A2;

X Lorenz dominates Y ⇔ �X ¿ �Y and �X ¿ �Y : (6)

A simple proof of the suNciency statement of the theorem is given in Kleiber
(1999), which we reproduce here for the upper tail only. From (1), Lorenz dominance
of X over Y is equivalent to g(x) =

∫∞
x

IFY (t) dt=
∫∞
x

IFX (t) dt¿ 1 for all x¿ 0. By
assumption, the tail of IFY is regularly varying with parameter −�Y , and hence its
integral regularly varies with −�Y + 1. Therefore g regularly varies with �X − �Y , but
limx→∞ g(x)¿ 1 iP �X ¿ �Y . The result for the lower tail is established similarly. The
necessity statement is obvious considering Assumption A1.

2.3. Estimating the parameter of regular variation

The parameter � of regular variation at in<nity in (4) can be estimated by Hill’s
estimator given by 2

�̂= H−1
k;n (7)

Hk;n =
1
k

k∑
i=1

ln (X(i))− ln (X(k)); (8)

where k is the number of extreme observations to be included (which de<ne the tail
area). This estimator was originally proposed by Hill (1975) as the maximum likelihood
estimator of the parameter � of the Pareto distribution model IF(x; c; �)= cx−� (i.e. the
special case in which the slowly varying function in (4) is a constant). However,
more general properties of Hill’s estimator are well-known. For <xed k, the estimator
Hk;n converges in distribution to a gamma distribution as n → ∞. It follows from a
diagonalisation argument that for any IF satisfying (4),

√
k(Hk;n− �−1) converges to a

normal distribution with variance �−2 provided k tends to in<nity suNciently slowly.
Various theorems exist in the literature which make the last statement more precise.
We present one of them below. 3

2 Following the preceding remarks, Hill’s estimator is readily adaptable for an estimation of � for the
lower tails, being now based on the k smallest observations X(n−k+1); : : : ; X(n):

�̂ =
(

1
k

k∑
i=1

ln (X−1
(n−i+1)) − ln (X−1

(n−k+1))
)−1

:

3 See, for instance Embrechts et al. (1997, Chapter 6.4). Theorem 2(c) is due to de Haan and Peng (1999).
Another version is given in Haeusler and Teugels (1985). See also Weissman (1978).
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Theorem 2. Under Assumption A2:
(a) (Weak consistency) If k → ∞; k=n→ 0; for n→ ∞

�̂
p→ �

(b) (Strong consistency) If k=n→ 0 ; k=ln ln n→ ∞; as n→ ∞
�̂ a:s:→ �

(c) (Asymptotic normality) Assume

lim
x→∞

IF(tx)= IF(x)− t−�
"(x)

= t−�
t−# − 1
−# ; t ¿ 0

exists where "(x) is a measurable function of constant sign. We refer to this as
a “second order condition” with the second order parameter of regular variation
−#. Let U (t) = F−1(1− t−1); and %(x) = �−2"(U (x)) and k → ∞ but k=n→ 0.
If

lim
n→∞

√
k%
(n
k

)
= &∈R;

then; as n→ ∞; the estimator �̂ is consistent and asymptotically normal with
√
k(�̂− �) D−→ N

(
�3

−#− � &; �
2
)
: (9)

Asymptotic normality is also obtained by Hall (1982) using a diPerent approach. He
assumes that the true distribution satis<es

IF(x) = x−�c(1 + dx−# + o(x−#)) (10)

asymptotically, an assumption which is more stringent than (4). The Fr4echet distribu-
tion, for instance, can be expanded asymptotically into the above form, i.e. IF(x) =
cx−�(1−0:5cx−�+o(x−�)). If the distribution can be expanded to m+1 terms, so that
IF(x) = cx−�(1 + d1x−� + · · ·+ dmx−m� + o(x−m�)), he shows that if k → ∞ such that
k=o(n2m=(2m+1)) then

√
k(�̂−�) D−→N(0; �2'2). In particular, if IF(x)=cx−�(1+O(x−#))

as x → ∞, if k → ∞ and if k = o(n2#=(2#+�)) as n→ ∞, then
√
k(�̂− �) → N(0; �2).

Hall’s result and Theorem 2(c) can be linked by observing that

L(x) = c(1 + dx−# + O(x−2#)) (11)

is a slowly varying function, L∈R0. Moreover,

L(tx)
L(x)

− 1 =
(1 + t−# dx−# + O(x−2#))
(1 + dx−# + O(x−2#))

− 1

= (t−# − 1)dx−# + O(x−2#); (12)

so −# in (10) is in fact the second order variation parameter of Theorem 2(c), and
the required function is

"(x) = (−#)dx−#: (13)
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In order to implement the Hill estimator, it remains to choose k appropriately. For a
sample with given size, there is no universal optimal choice, and diPerent methods have
been proposed. One method is a Hill’s plot: plot the estimate H−1

k;n against k and select
a value of k for which the plot is (roughly) constant. Embrechts et al. (1997, p. 194)
observe that the Hill estimator can perform poorly if the slowly varying function in (4)
is far from being a constant. This poor performance manifests itself in a volatile “Hill’s
horror plot”. It is therefore informative in a parametric context to examine whether a
given parametric model is close to the Pareto model asymptotically. We examine this
point below. If the Hill’s plot is too volatile, using a logarithmic scale for k may
increase the display space taken up by H−1

k;n around the true value �. This alt(ernative)
Hill’s plot, proposed in Drees et al. (2000) is thus given by {((; H−1

[n(]; n); 06 (6 1}.
In order to illustrate Theorem 2 we discuss some parametric models in Appendix A.

The results will also be of use in the simulation study below in which k is chosen by
minimising the mean-squared error of the Hill’s estimator �̂= H−1

k;n .

2.4. The test

The income distribution functions of X and Y are given by FX and FY , respectively.
Let −�X be the index of regular variation of IFX (at in<nity) and �X the index of
regular variation of FX at zero, and de<ne −�Y and �Y for FY similarly.

Extreme upper and lower order statistics are asymptotically independent (David,
1981, p. 267). Let Ik and k denote the number of upper and lower extreme observations,
respectively, to be included in the estimators. To meet the conditions of Theorem 2(c)
let Ik and k grow suNciently slowly so that the bias term & equals 0. Ik and k thus
delineate the tails of the distribution. In between these ranges, the conventional test
applies. Under these conditions the joint asymptotic distribution of �̂X and �̂X is


√

Ik(�̂X − �X )√
k(�̂X − �X )


→ N

([
0

0

]
;

[
�2X 0

0 �2X

])
:

Further, if the samples of X and Y are independent, so are �̂X and �̂Y , and �̂X and
�̂Y .

To test whether X Lorenz dominates Y throughout (under Assumption A1), the
appropriate null and alternative hypotheses concerning the tails are

H0: the population Lorenz curves cross at the bottom or the top

i:e: (�X ¡�Y or �X ¡�Y )

H1: not H0

i:e: (�X ¿ �Y and �X ¿ �Y ): (14)

Rejecting the null hypothesis <rmly establishes Lorenz dominance of X over Y because
of Theorem 1.
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Let IkX ; kX and IkY ; kY denote the number of extreme observations for the estimation
of �̂X ; �̂X and �̂Y ; �̂Y , respectively. A suitable test is based on the two statistics

T1 =
�̂X − �̂Y√

�̂2X = IkX + �̂2Y = IkY
; (15)

T2 =
�̂X − �̂Y√

�̂
2
X =kX + �̂

2
Y =kY

: (16)

These test statistics are asymptotically normal, despite the dependence between numer-
ator and denominator, as can be seen from an application of Slutsky’s theorem. 4

As T1 and T2 are asymptotically independent 5 and standard normally distributed,
the null hypothesis is rejected when both T1 and T2 are too large. The critical level +
for signi<cance level " is chosen such that the probability P(T1¿+ and T2¿+)6 "
under the null hypothesis. Because of

P(T1¿+ and T2¿+) = P(T1¿+)× P(T2¿+)

= (1− -(+))2

the critical value is given by +=-−1(1−√
"), where -−1 is the quantile function of

N (0; 1).
If the parameters are on the boundary of H0 the (true) null hypothesis is rejected

(asymptotically) with a probability of ". If the parameters are inside H0 the error
probability of the <rst kind is less than ". The power of the test depends, of course,
on the true parameter values, and we have approximately

P(H0 rejected | �X ¿ �Y and �X ¿ �Y )

=P(T1¿+ and T2¿+) (17)

=

(
1− -

(
+− �X − �Y√

�2X =kX + �2Y =kX

))

×
(
1− -

(
+− �X − �Y√

�2X =kX + �2Y =kX

))
: (18)

4 Consider /=(�̂X − �̂Y )(�2X = IkX +�2Y = IkY )
−0:5. It is easily seen that / has a limiting Gaussian distribution,

but it cannot be implemented since �X and �Y are, of course, unknown. De<ne the random sequence
c IkX ; IkY

= (�2X = IkX + �2Y = IkY )
0:5=(�̂2X = IkX + �̂2Y = IkY )

0:5, which has the property that c IkX ; IkY

p→1. By Slutsky’s
theorem, T1 = /c IkX ; IkY

converges to the same (Gaussian) distribution as /. T2 is dealt with similarly.
5 This follows since the extreme upper and lower order statistics are asymptotically independent (David,

1981, p. 267).
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Table 1
Regular variation parameters for the Singh–Maddala distribution

Tail Upper Lower

Parameter of regular variation (�) −bc −b
Second order parameter (#) b b

&k;n (bc)−1k1=c+1=2n−1=c c + 1
2c

b−1n−1k3=2

For the de<nition of &k;n see Theorem 2(c).

3. Illustrations

We <rst present some evidence which reveals that sample Lorenz curves may inter-
sect in the tails, although the population Lorenz curves do not cross: in our experiments
45% of sample Lorenz curves intersect in the tails. This is precisely the situation about
which we would like to make statistical inference. Using our test we are able to infer
in many cases that despite sample tail crossings, the population Lorenz curves exhibit
statistically signi<cant Lorenz dominance. Moreover, our experiments suggest that the
empirical level of our test is close to its nominal value.

3.1. The experiments

We let X and Y have Singh–Maddala distributions de<ned by

f(x; a; b; c) =
bcxb−1

ab[1 + (x=a)b]c+1 :

In Appendix A we show that for this function the parameters relevant for the experiment
are given by Table 1.

We parameterise the densities as fX (:; 100; 2:8; 1:7) and fY (:; 100; 2:4; 1:8) so that
X Lorenz dominates Y . This choice is further motivated by the facts that the Lorenz
curves: (i) look similar to curves encountered in empirical applications and (ii) are
far apart in the middle of the distribution, in order to satisfy Assumption A1. Lorenz
dominance follows immediately from the analytical form of the Lorenz curves, given
for the Singh–Maddala distribution by

p �→ IB1−(1−p)1=c
(
1
b
+ 1; c − 1

b

)
where IB(·; ·) is the incomplete Beta function (Schader and Schmid, 1988). The pa-
rameter choice is, of course, also consistent with Lorenz dominance in the tails as
a comparison of the parameters of regular variation reveals. 6 The population Gini
coeNcients 7 are GiniX = 0:2887 and GiniY = 0:3275.
X Lorenz dominates Y , but the corresponding empirical Lorenz curves L̂X and L̂Y

may, of course, intersect. Our Monte Carlo simulation is based on 100; 000 replications

6 Using (6) since, as regards the upper tail, �X = 2:8 × 1:7¿�Y = 2:4 × 1:8 and, for the lower tail,
�X = 2:8¿�Y = 2:4.

7 Recall that the Gini coeNcient is de<ned by Gini = 1 − 2
∫ 1
0 L(p) dp.
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Table 2
Results of the Monte-Carlo simulations: intersections of sample Lorenz curves when the population Lorenz
curve of X dominates that of Y

Intersecting sample Lorenz curves 45%
Intersections below the 5% quantile 22%
Intersections above the 95% quantile 30%

Table 3
Number of extreme observations included in the Hill’s estimator. The sample size is n = 5000

Ik k

fX (:; 100; 2:8; 1:7) 142 430
fY (:; 100; 2:4; 1:8) 128 436

of empirical Lorenz curves estimated from samples of size 5000. The result, reported
in Table 2, is that the proportion of non-intersecting L̂X and L̂Y is as low as 0.55: In
45% of the cases the empirical curves cross even though the theoretical curves do not.
The reason for this unsatisfactory state of aPairs is the large number of intersections
in the tails as shown in the table.

We proceed to examine the performance of our test. For each replication we es-
timate the parameters �X , �Y , �X and �Y using the Hills’s estimator. This requires
choosing the number of extreme observations to be considered. Since it is impractical
to evaluate a Hill’s plot for each iteration of the simulation, we let Ik and k minimise
the mean-squared error of the Hill’s estimator in the parametric model on which the
simulation is based. Clearly, this simpli<cation is not possible in empirical applications
where the population values are unknown. From Theorem 2(c) it is immediate that the
mean-squared error of the upper tail parameter estimate is

MSE�̂ =
1
k

(
�2 +

�6&2k;n
(−#− �)2

)
and Ik = argmin

k
MSE�̂;

where −# is the second order regular variation parameter and &=&k;n is de<ned in the
theorem. For the lower tail, let k minimise MSE�̂. For the Singh–Maddala distributions

we obtain, using Table 1, Ik and k reported in Table 3.
From the estimates �̂X , �̂Y , �̂X , �̂Y and from IkX , kX , IkY and kY we compute the

statistics (15) and (16) for our test of the null hypothesis

H0: the population Lorenz curves cross at the bottom or the top:

The result is that in 61.5% of cases we reject H0 at a signi<cance level of "=0:1 and
<rmly conclude Lorenz dominance. 8

We carried out further Monte-Carlo simulations to determine the empirical signi<-
cance level of the test procedure, as power properties should not be assessed unless
the nominal signi<cance level is kept everywhere on H0 (in particular at the border

8 Using (18) the (asymptotic) power equals 0.591.
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Table 4
Summary statistics of income distributions, number of extreme values, and Hill estimatesa

Country No. obs. CV Gini Ik k �̂ �̂

Canada (CN) 100,180 0.5558 0.2833 317 563 4.27 2.13
Germany (GE) 150, 76 0.5373 0.2456 520 199 4.68 2.16
Italy (IT) 236, 81 0.7788 0.3419 698 154 2.86 1.64
USA (US) 162,122 0.7270 0.3619 122 1337 4.00 1.23

aThe tail indices �̂ and �̂, and k = n( have been determined using alternative Hill plots, see Figs. 1
and 2.

of H0 where both samples are drawn from the same distribution). Drawing 100; 000
samples of size 5000, each from two Singh–Madalla distributions with equal densities
fX (:; 100; 2:8; 1:7)=fY (:; 100; 2:8; 1:7) we <nd that the empirical signi<cance level for
"=0:1 is 0:09736. 9 Hence our test is slightly conservative and the results concerning
the power are meaningful.

3.2. Empirical examples

We now proceed to illustrate the merits of our test procedure with real world data
taken from the Luxembourg Income Study (LIS), 10 which has been used for many
inequality analyses (see, e.g. Atkinson et al., 1994). This database provides comprehen-
sive and comparable information about household composition and income for many
countries. The LIS de<nition of disposable income includes earnings, other factor in-
come, means and non-means tested social insurance transfers and public and private
pension transfers; mandatory social insurance contributions and income tax are sub-
tracted.

We investigate Lorenz dominance relations of four major economies in 1994: the
United States, Canada, Italy and, at the other end of the inequality spectrum, Germany.
The left-hand side of Table 4 reports summary statistics of the income distributions
(number of observations, coeNcient of variation and the Gini coeNcient).

We proceed to investigate the inequality orderings of these countries based on their
Lorenz curves. Before applying our test, we <rst verify whether our test is applicable,
i.e. we verify whether Lorenz dominance occurs in the main body of the distributions
(Assumption A1). To this end, we consider the sample Lorenz curves at deciles. Table
5 reveals that in all cases but one Lorenz dominance appears to prevail. Our test is
then appropriate for all pairs except Italy and the USA. Table 5 also makes clear
that the tails cannot be ignored: apart from the pair Canada–Italy all other pairs have
intersecting sample Lorenz curves, in all cases but one the intersection occurs in the
tails. For instance, Canada does not appear to Lorenz dominate the USA, even despite
the large diPerence between the Gini coeNcients.

9 Similarly, using the second set of parameters for the Singh–Madalla distribution, i.e., fX (:; 100; 2:4; 1:8)=
fY (:; 100; 2:4; 1:8), the empirical level is 0.09807.

10 See http://www.lis.ceps.lu/summary.htm for a detailed description.

http://www.lis.ceps.lu/summary.htm for a detailed description.
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Table 5
Lorenz dominance

At deciles Entire curve

Canada Germany Italy Canada Germany Italy

Germany ¿ ×
Italy ¡ ¡ ¡ ×
USA ¡ ¡ × × × ×
Note: “¡” means that the row country is dominated bythe column country, “¿” the reverse, “×” indicates

crossing.

Table 6
Null hypotheses, test statistics, and test results

Pair H0 (Lorenz curves cross) T1 T2 Test result

CN–GE �CN¿�GE or �CN¿�GE −1:2789 −0:1478 Do not reject
CN–IT �CN¡�IT or �CN¡�IT 5:3842 3:0752 Reject
GE–IT �GE¡�IT or �GE¡�IT 7:8545 2:5608 Reject
CN–US �CN¡�US or �CN¡�US 0:6280 9:3956 Reject
GE–US �GE¡�US or �GE¡�US 1:6256 5:9223 Reject

Fig. 1. Alternative Hill plots for the upper tail parameter (�).

In order to test whether the tail crossings are statistically signi<cant we apply our
test procedure. The number of extreme observations to be included into the estimators
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Fig. 2. Alternative Hill plots for the lower tail parameter (�).

are determined by investigating the alternative Hill’s plots (see Appendix C). The right
part of Table 4 gives the numbers of upper and lower extremes ( Ik and k) as well as
the resulting Hill estimates of the index of regular variation for the upper tail (�̂) and
for the lower tail (�̂).

Table 6 states the null hypotheses that the Lorenz curves cross, given that there is
Lorenz dominance in the main body of the distribution (hence Italy–US is disregarded).
Further, we provide the values of the test statistics T1 and T2, the test results at 10%
signi<cance level are reported in the right-most column.

We conclude that there is strong statistical evidence that Canada Lorenz dominates
Italy, Germany Lorenz dominates Italy, and that Canada Lorenz dominates the USA,
even if the tails are taken into account. This demonstrates the good performance of the
proposed test: in many cases we are able to infer that despite sample tail crossings the
population Lorenz curves do, in fact, exhibit Lorenz dominance.

4. Conclusion

The appeal of the Lorenz dominance criterion is undermined by the practical problem
that many sample Lorenz curves intersect in the tails. Our experiments also suggest that
sample tail intersections may easily occur for population Lorenz curves which are “far
apart”. The usual inferential methods, based on central limit theorem arguments, do
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not apply to these tails since they contain too few observations. By contrast, we have
proposed a test procedure for distributions whose tails lie in the domain of attraction
of the Fr4echet distribution, which fully takes into account the tail behaviour of Lorenz
curves. Our experiments and empirical examples demonstrate the good performance of
the proposed test: in many cases are we able to infer that despite sample tail crossings
the population Lorenz curves do, in fact, exhibit Lorenz dominance. Moreover, our
experiments suggest that the empirical level of our test is close to its nominal value.
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Appendix A. Tail behaviour of some parametric models

In this appendix we discuss the tail behaviour of the generalised beta distribution
(which nests many important cases such as the Singh–Maddala distribution and the
Dagum distribution) in order to illustrate the application of Theorem 2. These distri-
butions have regularly varying tails and <t real world income data reasonably well
(Brachmann et al., 1996).

The generalised beta distribution, proposed in McDonald (1984), has density

f(x; a; b; c; d) =
bxbd−1

abdB(d; c)[1 + (x=a)b]d+c
; (19)

where B(·; ·) denotes the Beta function, and nests various distributions as special cases.
For instance, if d = 1 then (19) reduces to the Singh–Maddala distribution, which
captures many actual income distributions, both as regards both tails and the main body
(Singh and Maddala, 1976). Its tail is given explicitly by IF(x; a; b; c)=(1+(x=a)b)−c. 11

Another example is the Dagum distribution (for c = 1).
To obtain an approximation to the upper tail of the distribution function, divide (19)

by [(x=a)b]d+c, expand [(x=a)b]d+c=[1 + (x=a)b]d+c to second order and integrate:

IF(x; a; b; c; d) = g1x−bc(1 + g2x−b + O(x−2b)); (20)

11 Note that this distribution is of the Pareto type for large x since IF(x) = abcx−bc + O(x−b(1+c)). Thus
x needs to be large to avoid Hill’s horror plots for the upper tail estimation. As regards the lower tail, we
observe that F(x) = xb(ca−b + O(xb)). Hence a good result for the lower tail estimation is to be expected.
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for some constants gi. Thus, the upper tail is regularly varying with parameter −�=−bc,
and using (11) and (12), the second order parameter is −# = − b. 12 Eq. (20) is
also in a form which permits direct application of Hall’s result, so that k of the
Hill’s estimator �̂ = H−1

k;n must satisfy o(n2=(2+c)) to ensure unbiasedness. To apply
Theorem 2(c) directly, it follows from (13) that "(x) = (−b)g2x−b. In order to derive
U (:), just consider the <rst-order term in (20) and invert to get U (x)˙ x1=bc. Hence,
k0:5%(n=k)˙ k0:5+1=cn−1=c, so to obtain no bias we require k = o(n2=(2+c)).

As regards the lower tail, the usual expansion yields

F(x; a; b; c; d) = g3xbd(1 + g4xb + O(x2b))

for some constants gi. Hence the lower tail varies with parameter � = bd, and the
second order parameter is b. Direct application of Hall’s result shows that k of the
Hill’s estimator �̂=H−1

k;n must satisfy o(n2=(2+d)) to ensure unbiasedness. The “second
order condition” can be veri<ed in a similar fashion.

Appendix B. The multiple hypotheses test

In this appendix we consider how a test of Assumption A1 can be taken into account
for a test of whether X Lorenz dominates Y . This then constitutes a multiple hypotheses
testing problem (see e.g. Savin, 1993) since Lorenz dominance must occur in both (i)
the main body of the distribution and (ii) the tails. The implementation of the test—
either as a union–intersection or an intersection–union test—depends on the various
ways in which the individual hypotheses are formulated.

If the overall null hypothesis is in line with (14) the two individual null hypotheses
are H1

0: “Y dominates X or a crossing occurs in the main body of the Lorenz curve”
and H2

0: “Y dominates X or a crossing occurs in the tails of the Lorenz curve” with
the alternatives H1

1: “X dominates Y in the main body” and H2
1: “X dominates Y

in the tails”. The overall null hypothesis is rejected if both H1
0 and H2

0 are rejected.
Determining the overall signi<cance level " of this union–intersection test is facilitated
by the fact that the individual test statistics are asymptotically independent. Hence,
setting both signi<cance individual levels to

√
" results in an overall level of ".

If the overall null hypothesis is reversed, the individual hypotheses are H1
0: “X dom-

inates Y in the main body” and H2
0: “X dominates Y in the tails” with the alternatives

H1
1: “Y dominates X or a crossing occurs in the main body” and H2

1: “Y dominates X
or a crossing occurs in the tails”. This constitutes an intersection–union test, and the
overall null hypothesis is rejected if H1

0 or H2
0 is rejected. The individual signi<cance

levels need to be set to 1−√
1− " to keep an overall level of ".

Since our aim is to <rmly establish Lorenz dominance of X over Y the appropriate
test is the union–intersection test.

12 Note that the <rst-order result could also have been obtained directly from (19) using the lemmas in
Embrechts et al. (1997, p. 564) by observing that its numerator is regularly varying at in<nity with parameter
bd−1, the denominator with bd+bc, so the ratio regularly varies with −bc−1, and the tail of the distribution
function with −bc.
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Appendix C. Alternative Hill’s plots

The alternative Hill’s plots for Canada (CN), Germany (GE), Italy (IT), and the
USA (US) are shown in Figs. 1 for the upper tail and 2 for the lower tail.
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